
An approach to automatically generate test cases for AI-based
autonomous heavy machinery

Iman Sonji, M.Sc.1,3, Hannes Vietz, M.Sc.1,3, Prof. Dr.-Ing. Christof Ebert2,3,
Prof. Dr.-Ing. Michael Weyrich1,3

1Institute of Industrial Automation and Software Engineering, University of Stuttgart
Pfaffenwaldring 47, 70569 Stuttgart, Germany

2Vector Consulting Services, Ingersheimer Str. 20, 70499 Stuttgart, Germany
3Robo-Test c/o University of Stuttgart, IAS

Iman.sonji@ias.uni-stuttgart.de
Hannes.vietz@ias.uni-stuttgart.de

Christof.ebert@vector.com
Michael.weyrich@ias.uni-stuttgart.de

Abstract: Testing autonomous systems is challenging due to the self-adaptive
behavior and unpredictable environments of such systems. With the increase
of AI-based functionalities in autonomous systems, release and homologa-
tion become difficult with the lack of transparency and software explainabil-
ity. For instance, maintaining a valid safety case is hardly possible with
learning and adaptive systems and software deliveries over the air. There-
fore, with frequent software updates and continuous development streams,
test cases must be generated automatically while at the same time providing
coverage (e.g., indicating progress with KPIs), efficiency (e.g., limiting the
amount of regression testing) and transparency (e.g., showing how specific
corner cases are tested in case of accidents). In software testing, ontologies
have demonstrated that they can assist in generating test cases as they en-
code domain knowledge in a more structured and machine-readable format.
A case study shows how requirements and ontology-based formalized knowl-
edge addresses systematic testing of autonomous heavy equipment. This pa-
per provides a scenario-based testing method for automatically generating
test cases for AI-based autonomous systems. Starting from the requirements,
the proposed methodology is to map expert domain knowledge into a formal
ontology-based model and then generate test cases with the assistance of this
model.

Keywords: Autonomous Systems, Testing, Scenarios, Test Cases, AI-based,
Complexity, Transparency

1 Introduction

Autonomous construction and heavy machinery have a vast potential since they can op-
erate in hazardous or toxic environments that can be dangerous for humans. More specif-
ically, earth-moving excavators are often used in removing hazardous materials such as
barrels or other industrial waste. As contamination poses risk to humans, automation of



such systems and ensuring their safety becomes necessary. Verification and validation of
an autonomous excavator become a great challenge since it is hard to collect data in such
environments to train and test the system. However, development and testing require data,
and without sufficient amount of the “right” data, AI-based automation solutions cannot
be developed, and the safe operation of these solutions cannot be proven.

An industrial autonomous system is defined in [8] as a delimited technical system that
can operate in an unpredictable environment systematically and without external inter-
vention. A characteristic of many autonomous systems is high system complexity, which
stems from uncertain, complex operating environment that necessitates the use of various
sensors. An in-depth discussion of definitions and aspects of industrial autonomous sys-
tems is given in [8]. Due to the high complexity of such systems, not all functional and
safety requirements can be identified from the beginning in the development phase [2, 3].

Another characteristic of autonomous systems is that they often operate in highly dynamic
and unknown environments. This increase of environment complexity makes it infeasi-
ble to test for all different environment settings. Due to cost and time constraints, only a
limited number of test cases can be run which should still provide high coverage of the
system requirements. In high-safety systems, any failure that cause harm to the environ-
ment or the system itself is not acceptable. Therefore, an effective and efficient test case
generation approach is required to verify the safety of such autonomous systems.

In this paper, we dive into the challenges and the systematic methods for testing au-
tonomous systems in section 2. Focusing on scenario-based testing in relation to ontology-
based domain knowledge, an approach for generating test cases and simulating synthetic
data for an AI-based excavator is proposed in section 3. Finally, research highlights and
possible future work are discussed in section 4.

2 Basics and Related Work

2.1 Challenges of Testing Autonomous Systems

The challenges behind testing autonomous systems come from the need for efficiency,
safety, and quality [3]. The most common challenges in achieving systematic testing are
primarily related to unpredictable environments, estimating coverage, and lack of trans-
parency.

1. Test efficiency despite high environment complexity: The unpredictable and high
complexity of the system environment leads to an explosion of parameters and sce-
narios that can be explored. However, exploring and testing all environmental con-
ditions is inefficient and infeasible. This high complexity leads the development
engineer to miss out on operating conditions (i.e. influential factors) that might be
unknown during design time or fail to foresee a combination of known parameters
that might lead to the system’s failure. Since we cannot test for all possible com-
binations, the research question would be: How can we efficiently derive test cases
that reveal unknown knowledge or identify faults in the autonomous system?



2. Estimating degree of safety based on test cases: Unknowns and uncertainties added
to the testing process make it challenging to determine how safe the system is.
High coverage is usually achieved with a high number of test cases. Since this
easily becomes inefficient, the research question would be: How to derive sound
conclusions about safety and quality based on the selected test cases?

3. Achieving transparency: The black box nature of AI-based systems and the lack of
traceability of requirements make it challenging to explain failures or unpredictable
behaviors of the selected test cases. Because of the high system complexity, the
influential factors and which parameters to tune might be unknown to the test engi-
neer. Since transparency is important for system verification, the research question
would be: How to explain the results of the selected test if something goes wrong?

The development and testing of autonomous systems is complex, and the correspond-
ing processes must be systematic and coupled with continuous improvement character.
Scenario-based testing and ontology models are explored in the framework of systematic
testing.

2.2 Scenario-Based Testing (SBT)

Due to the increasing complexity of autonomous systems, conventional methods such as
the function-based approach or the distance-based approach are no longer sufficient. In
the classic function-based approach, system functions are described in detail, forming the
basis for testing. But an unambiguous definition of system functions is often too time-
consuming for autonomous systems. In the distance-based approach, a vehicle should
cover a certain distance without accidents to be considered safe. However, Klara et al. [6]
suggest that the autonomous system should drive 11 billion miles to demonstrate that their
failure rate is 20% better than that of a human driver, making this approach inefficient.

SBT can be seen as an evolution of the function-based and distance-based approaches
[2, 11]. The primary artifact in SBT is the scenario which is defined according to Ulbrich
et al. [10] as the temporal sequence of scenes linked by respective actions and events.
Subsequently, Menzel et al. [7] represented scenarios in three abstraction layers: func-
tional (semantic level), logical (state space level), and concrete scenarios (distinct values).
A test case can be defined as a concrete scenario enriched by suitable evaluation criteria.
For validation, scenarios that describe environmental characteristics and specify the goals
of the autonomous system are defined. Moreover, operational design domain (ODD) has
become an important topic in scenario-based testing to define the environmental operating
conditions in which your autonomous system can safely operate in [4]. ODD is used as a
systematic measure to verify that the test scenarios cover the system requirements.

There are two different approaches to identify and derive scenarios: a data-driven and a
knowledge-based approach [4]. The data-driven approach deploys AI techniques on real-
world data to generate scenarios. However, due to data scarcity, similar to our case, a
knowledge-based approach can be adopted where scenarios are identified from experts’
knowledge. The automation of this process requires this knowledge to be represented
in a formalized format to represent the functional and logical scenarios. Ontologies are



usually used to formalize this knowledge. A base setup for SBT is proposed in Figure 1
which will be explained in detail in section 3.

Figure 1: Proposed Framework for Scenario-Based Testing

Scenario-based testing can therefore be used to meet the challenges posed by the high
complexity of autonomous systems. By reusing scenarios during further system devel-
opments, they also form a good basis for regression testing. However, a complete set of
scenarios is still impossible during design time due to many unforeseeable conditions (i.e.
unknown unknowns). Moreover, some additional challenges arise when implementing
SBT such as:

• Providing the right data: Concrete test data that precisely represent a specific test
case of a certain scenario are required.

• Generating scenarios systematically, meaningfully, and comprehensibly [3].

2.3 Ontologies

2.3.1 Basics and Definitions

According to Guarino et. al., “Ontology is a formal, explicit specification of a shared
conceptualization” [5, p. 5]. Ontologies are used to represent knowledge in a formalized
and machine-readable format. They contain standardized definitions of concepts that are
used in a specific domain of knowledge. For example, in the field of heavy machinery,
concepts such as landfill, barrel, excavator, or anything that exists in time and space in
this domain can be defined in an ontology. Unlike taxonomies which define a hierarchical
classification schema on concepts, ontologies define how these concepts relate or differ
from each other. A formalized ontology uses first-order logic to describe these relations.
Therefore, logical reasoning can be used to infer further knowledge from them.

Ontologies define concepts as classes, and the members of these classes are called in-
dividuals. A class consists of a set of actual things in the domain that share common



characteristics. For example, humans and vehicles can belong to the same class “Dynam-
icObject”. The relationships between members of classes are defined as properties. The
relationships are usually directed, and they point from subject to object, resulting in triples
in subject-predicate-object. According to Studer et. al. [9], ontologies can be structured
into two parts, terminological boxes (known as TBox) which describe the concepts of
a specific domain, and assertional boxes (known as ABox) which describe instances of
the classes and facts observed from the situational knowledge. For example, defining the
triple “RoadVechiles-driveOn-Road” is part of the TBox (terminologies). However, defin-
ing the triple “CarA-driveOn-Bahnhofstrasse” is part of the ABox (assertions). Reasoners
can then be used to identify missing or additional knowledge or conflicts in concepts from
terminological and assertional boxes. Automated reasoning can be applied easily to find
these associations between classes and their individuals.

2.3.2 Related Work

Ontologies are increasingly used in the validation and verification process of autonomous
systems, especially in automated driving [4] due to their ability to formalize domain
knowledge of a specific domain. In [1], Bagschik et. al. propose a knowledge-based
approach for scene generation in natural language for testing automated vehicles using
ontologies. According to [1], assertional boxes can be used to describe real-world scenes
extracted from a set of world terminologies (entities and relations). Functional scenarios
were represented on a semantic level using Web Ontology Language (OWL) which was
used as a basis for generating concrete scenarios. An ontology-based model was created
based on expert knowledge, guidelines that describe infrastructure in Germany, and road
traffic guidelines.

Xiong in [12] presented an orchestration of scenarios based on an ontology-based scenario
representation. A framework was built to simulate test cases for automated vehicles. The
ontology depicted in the framework consisted of concepts and relations between the driv-
ing context, actions and events, and temporal relations between different entities during
simulation. Another common use case of ontologies is scene understanding which is de-
scribed in [13]. The paper describes how ontologies can be used to model spatio-temporal
relations between different participants in a scene. The ontologies are then applied to in-
fer how these participants would interact with the vehicle under test in real-time.

Ontologies have a potential to provide a suitable framework to support achieving system-
atic scenario-based testing as they provide a common understanding and standardization
of domain knowledge. In addition, unambiguous definitions of terms regarding individual
functionalities and environment dimensions allow sharing and reuse of scenarios. How-
ever, as most of the research on ontologies was applied in the on-road automated driving
domain, different terminologies and concepts need to be identified to create a basis for
generating off-road scenarios.



3 Approach

Existing testing methods either focus on deriving critical tests for corner cases, or focus on
testing one particular aspect of the autonomous system (e.g., collision avoidance). More-
over, in common scenario-based testing methods, scenarios always appear as an ideal
starting point for the derivation of test cases and suitable safety criteria. However, adding
requirements in the automated testing framework and ensuring traceability can bring light
in identifying inconsistencies or missing safety requirements unknown at design time.
The process of identifying requirements as a starting point and ensuring their correctness
and consistency could play an important role in deriving scenarios and test cases.

In this paper, we propose a scenario-based approach based on requirements, knowledge-
based ontology models, and synthetically generated data for the development and testing
of autonomous systems. The use case is the development and testing of autonomy func-
tions of an autonomous 24-ton excavator. The proposed approach is shown in Figure 1.
As discussed, the systematic and meaningful generation of scenarios is crucial for suc-
cessfully developing and testing autonomous systems. The following sections describe
the training- and testing loop, focusing on the blue shaded region of the architecture.

3.1 Identifying requirements and functional scenarios

This phase includes gathering knowledge about the use cases of an excavator and the
infrastructure of different types of landfills. Based on expert knowledge, ISO 17757,
and in compliance with SOTIF methods, we identify requirements, base scenarios, and
scenario dimensions for a 24-ton excavator.

Figure 2: Semantic Description of a Functional Scenario

The functional scenarios are sketched and semantically described based on four main
elements: Objects, Actions, Context, and Relations. The semantic description of sce-
narios represents the base for building an ontology model by modeling the terminolo-
gies/concepts as entities and modeling the relationships and dependencies between the
scenario elements. A sketch of a functional scenario and its description are shown in
Figure 2 based on the use case “Barrel Identification”.



3.2 Generating test cases

This phase is responsible for enriching the abstract scenarios with semantic data to form
meaningful and useful scenarios. The functional scenarios are therefore converted to logi-
cal scenarios by adding the scenario parameters and their ranges. The ontology defines the
parameters identified in the functional scenario and their relations to other parameters in
the state space (TBox). Therefore, the ontology would form the basis for scenario gener-
ation. For example, the ontology would always automatically require defining the param-
eters with the dimensions relevant for the scenario. To ensure that the scenario remains
valid when certain parameter values are varied, the dependencies between parameters
should be also considered. Therefore, the ontology also defines dependencies between
parameters and whether one can influence another parameter. For example, the weather
(rain or sunny) influences the wetness of the landfill soil. These constraints should also
be specified in the TBox or described using other forms of semantic rules.

The concrete scenarios are then derived from the logical scenario. Using logical reason-
ing, the validity and the meaningfulness of the scenario can be verified by identifying any
logical inconsistencies or missing information. The concrete scenarios are then supported
with evaluation criteria (pass/fail) to form proper test cases. The role of the ontology
in this phase is to describe the environment and formalize expert knowledge about land-
fills’ topology, its elements, and their relations between them. The primary use cases are
summarized as follows:

• Support in describing functional scenarios by providing definitions for scenario el-
ements.

• Provide correlations between dimensions (e.g., rain implies cloudy sky).

• Verify concrete scenarios and add missing information (e.g., infer certain parameter
value based on chosen values)

3.3 Executing test cases and analyzing results

The concrete scenarios are then simulated to generate synthetic data. The development of
autonomy functions for a 24-ton excavator focuses on using the camera and lidar sensors,
for instance in the safe identification of half-buried barrels. Unreal Engine was selected
as a simulation tool since photorealistic camera data is needed. As shown in Figure 3, the
Unreal Engine is a powerful simulation tool compatible with various CAD 3D modeling
formats and can render photorealistic camera data. Unreal Engine is controlled via the
standard Universal Scene Description interface.

The test results achieved in the executed scenarios are analyzed to close the training and
test loop. The first step is to assess whether test cases are classified as pass or fail, and
which requirements have already been met since all the associated tests have been passed.
Further analysis enables intelligent cognitive testing; for example, the identification of
challenging scenarios and the execution of additional loop runs that focus on corner cases
and possibly bring to light errors in or missing requirements.



Figure 3: Model of excavator used in Unreal engine in URDF format

A new loop run is also necessary if functions are refined, or new functions are developed.
The training- and testing loop provides support here, particularly in regression tests. If
necessary, further scenarios can be added as well. By distinguishing and describing log-
ical scenarios separately from concrete scenarios, the maintenance effort is minimized
since the logical scenarios remain independent of simulation tools.

4 Conclusion and Future Work

The constant improvement of autonomous systems challenges the development of such
systems. As a result of vulnerabilities becoming known, the need for continually learning
artificial intelligence arises. This results in continuous development, and corresponding
processes must be adapted to this. For this purpose, a training and test loop that supports
iterative development and realizes scenario-based testing was discussed. Ontologies are
suggested as a knowledge-based system to aid in the process of systematically generating
test cases.

One of the most important factors for the development of autonomous systems is data,
which is needed on the one hand for the training of artificial intelligence and on the other
hand for the testing of the system. To provide the right data for scenario-based develop-
ment or testing, the example of the development of an autonomous 24-ton excavator was
used to show how synthetically generated data can be used. By using synthetically gener-
ated data, the challenges of continuous development can be solved. Future work includes
the development of a web application for managing scenarios and test cases.



References

[1] G. Bagschik, T. Menzel, and M. Maurer. Ontology based scene creation for the
development of automated vehicles. IEEE, 2018.

[2] C. Ebert and R. Ray. Test-driven requirements engineering. IEEE Software, 38(1):
16–24, 2021.

[3] C. Ebert, M. Weyrich, B. Lindemann, and S. P. Chandrasekar. Systematic testing for
autonomous driving. ATZelectronics worldwide, 16(3):18–23, 2021.

[4] J. Erz, B. Schütt, T. Braun, H. Guissouma, and E. Sax. Towards an ontology that
reconciles the operational design domain, scenario-based testing, and automated ve-
hicle architectures. In 2022 IEEE International Systems Conference (SysCon), pages
1–8, 2022.

[5] N. Guarino, D. Oberle, and S. Staab. What is an ontology? pages 1–17. Scholars
Portal, 2009.

[6] N. Kalra and S. M. Paddock. Driving to Safety: How Many Miles of Driving Would
It Take to Demonstrate Autonomous Vehicle Reliability? RAND Corporation, 2016.

[7] T. Menzel, G. Bagschik, and M. Maurer. Scenarios for development, test and vali-
dation of automated vehicles, 2018.

[8] M. Müller, T. Müller, B. Ashtari Talkhestani, P. Marks, N. Jazdi, and M. Weyrich.
Industrial autonomous systems: a survey on definitions, characteristics and abilities.
at - Automatisierungstechnik, 69(1):3–13, 2021.

[9] R. Studer, V. Benjamins, and D. Fensel. Knowledge engineering: Principles and
methods. Data & Knowledge Engineering, 25(1-2):161–197, 1998.

[10] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer. Defining and sub-
stantiating the terms scene, situation, and scenario for automated driving. pages
982–988. IEEE, 2015.

[11] H. Winner, K. Lemmer, T. Form, and J. Mazzega. Pegasus—first steps for the
safe introduction of automated driving. Lecture Notes in Mobility, pages 185–195.
Springer, 2019.

[12] Z. Xiong. Creating a computing environment in a driving simulator to orchestrate
scenarios with autonomous vehicles. 2013.

[13] L. Zhao, R. Ichise, Y. Sasaki, Z. Liu, and T. Yoshikawa. Fast decision making using
ontology-based knowledge base. pages 173–178. IEEE, 2016.


