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Abstract: Caused by the liability shift from the operator of the vehicle to 

the producer, one of hardest challenges in the development of automated 

driving functions is ensuring safety under all conditions in the operational 

design domain (ODD) which is required for homologation. In the case of 

continuously updating the autonomous vehicles’ software stack, this is 

becoming even more critical. 

Software-in-the-loop (SIL) simulations are recognized to be the means of 

choice to reproducibly deal with the complexity of the vehicle’s 

environment in the validation process by performing an enormous number 

of tests in a reasonable amount of time. 

Beside many other aspects, one key puzzle piece in a consistent safety 

argumentation is the ability to prove trustworthiness of the virtualization 

of road tests. Hence, a major task is the continuous validation of the entire 

SIL environment itself - including all models and interfaces - to prove a 

sufficiently accurate representation of the complex environment in the 

simulator. At the same time, the used test library has to include 

sufficiently representative scenarios that cover the test space within the 

ODD. 

This paper depicts a scalable solution for the above-mentioned challenges, 

based on a continuous transfer of recorded real-world scenarios into 

simulation. The paper presents a method to prove validity of the 

simulation environment as well as approaches for real-world-data-based 

design of virtual simulation scenarios and test campaigns matching the 

vehicles ODD. 



 

 

1 Introduction 

In the last decade, the technology for automated driving (AD) on L3 and L4 has made 

enormous progress. Several pilot activities in a limited domain with limited local 

focus have proven that the developed principles work in everyday life. However, to 

finally take the step from these pilot applications to a broader scale – especially with 

a broader local scope – the type approval (homologation) is the final hurdle vehicle 

makers must take. 

Even though there is still a lack of regulations or defined protocols to follow for type 

approval of ADs by authorities for L2 to L5 systems, there are high level requirements 

e.g., introduced by [UNE21] that demand assurance that the AD acts safely in all 

rationally foreseeable situations. Therefore, software-in-the-loop (SIL) simulation is 

proposed as a key method in the validation process which enables an enormous 

number of test drives to be performed in a time-efficient and cost-efficient manner by 

means of virtualization using simulation models and scenarios. 

As a consequence, it is an essential precondition for a coherent safety argument that 

the meaningfulness of virtualized tests is retained through the step of replacing real 

world tests by simulation [IAM21], [MIE21], [SCH22]. Hence – beside other aspects 

– two topics must be addressed when setting up a simulation environment for 

virtualization of tests for validation / homologation to ensure trustworthiness of the 

simulation: 

1. Using validated simulation models that reflect the relevant physical effects on 

a sufficiently accurate level 

2. Using the right simulation scenarios that cover the relevant real-world 

scenarios 

To achieve this, the integration of data from real-world test drives into the 

virtualization is essential to prevent a drift of reality and simulation. This becomes 

even more obvious when the following three considerations are taken into account: 

• Validation of simulation is a continuous task during the whole product 

life cycle 

Due to performance, models used in ADAS/AD validation are typically 

designed to cover physical effects just up to the level of fidelity which is 

required to solve the intended tasks. The suitability for that is initially proven 

in the design and implementation phase of the models, e.g., by evaluating 

simulation results with comparable, selected, representative real-world 

situations. This already gives a valuable hint for the trustworthiness of the 

simulation, but it does not prove that the models generalize accurately in all 

possible situations. Hence, continuous evaluation of the model performance 

based on real-world data is key for a plausible trustworthiness statement, also 

because the domain of AD might change over time and new aspects of the 

environment not considered before might become relevant. 

  

 



 

 

• Scenarios are ODD-specific 

The scenarios an AD experiences in operation are specific for the operational 

design domain (ODD). Scenarios from generic scenario databases probably 

cover wide parts of the ODD, but these databases do not claim to be complete 

for all possible ODDs. Therefore, the scenarios from databases need to be 

complemented by an ODD-specific collection of scenarios to achieve a high 

coverage of the test-space within the target ODD of the AD. 

 

• Scenarios are driving-function-specific or even version-specific 

As traffic situations result from interaction between the involved traffic 

participants, the behavior of a traffic participant influences the behavior of 

others. Assuming that one participant is controlled by an automated driving 

function, it is the driving function’s behavior that influences the behavior of 

others. A more “aggressive” driving function might cause other reactions of 

the surrounding traffic participants than “careful going”. Going one step 

further, even new versions or parameterizations of a driving function might 

lead to different scenarios. 

To address the above-mentioned topics, we propose in this paper to complement the 

validation processes by a continuous data-driven approach based on data from test 

drives. Real-world data is the basis for evaluating the model’s/simulator’s fidelity, 

and additionally it allows the user to build up a scenario database with ODD-specific 

and driving-function-specific scenarios. The ability to automatically create simulation 

scenarios representing a digital twin of a recorded real-world scenario is an essential 

component in the proposed approach. 

1.1 A continuous data-driven approach for validation 

Figure 1 shows the main steps in the proposed continuous process. A central 

component in the proposed process is an ODD-based scenario- and data-management 

system. It structures the measurement data and the scenarios according to an ODD 

taxonomy and is the basis for future coverage analysis.  

 

Figure 1: Continuous data-driven process for a reliable validation argument 



 

 

Considering Test Drives, not every recorded minute of driving includes challenging, 

relevant scenarios. Hence, the relevant scenarios must be identified in the recordings 

by Scenario Selection. If a raw scenario is identified as a possible valuable new input 

to the scenario database, the Scenario Generation subsequently creates a digital twin 

of the traffic situation and static environment denoted as “simulation scenario”. This 

serves as a basis for Scenario & Model Validation by comparing the behavior of 

your real system with the behavior of the virtualized system (see chapter 2 Validation 

of the AD simulation based on real-world scenarios).  

After successful validation of the model with this scenario, the significance of the tests 

utilizing this scenario is proven and hence it can be added to the scenario database 

(see chapter 3 Collection of the right scenarios to cover the ADs ODD).  

Finally, the scenarios collected in the ODD-based scenario- and data-management are 

utilized for validation of existing and new software releases by Large Scale Scenario-

Based Testing before deploying the software to the vehicles. With new versions of 

the AD software, new scenarios might occur in the test drives. These scenarios are 

also integrated into the validation process by the continuous approach proposed here. 

This approach reliably demonstrates the trustworthiness of the simulation by ensuring 

the usage of validated models and scenarios. At the same time, it builds up a library 

of scenarios which are suitable and especially relevant for the specific operational 

design domain and driving function. 

2 Validation of the AD simulation based on real-world scenarios 

As described above, an important step in the proposed process is the validation of the 

AD simulation (models, scenarios, and simulator incl. interfaces) using real-world 

measurement data and the virtual representations of real-world scenarios. The basic 

concept is to correlate real-world measurement data with simulation data for 

evaluation of different quality indicators on several levels in data-processing pipeline. 

The high-level structure of the data-processing pipeline incl. the simulator and a 

subset of typical data produced by the different components is shown in Figure 2. In 

this pipeline several quality indicators addressing different components of the 

simulator can be implemented as described in the following chapters. 

 

Figure 2: Data-processing pipeline and simulator including interface-data 



 

 

2.1 Quality Indicator I: Validation of the generated scenario and the traffic 

simulation 

The basis for all subsequent validation steps is the simulation scenario representing a 

digital twin of the real-world scenario. Hence, it needs to be ensured that the 

simulation of the scenario leads to same motion of ego and traffic vehicles in the 

simulation as in the real world. 

By comparing simulated trajectories (= virtual object list) and ground-truth object lists 

extracted from the raw data in the labeling process, a quality metric for this first 

quality indicator (I) can be derived as shown in Figure 3. The maximum or average 

Euclidean distance of vehicle trajectories in each time-step or deviations in 

orientation, relative distances, or velocities of the vehicles are possible criteria. With 

this quality indicator, the Scenario Generation process and the Traffic Simulation 

model are validated. 

 

Figure 3: Validation of the generated scenario and the traffic simulation 

2.2 Quality Indicator II: Validation of the sensor simulation 

The second quality indicator (II) implements a comparison on the level of raw, 

unlabeled data (Figure 4).  

 

Figure 4: Validation of the sensor simulation 



 

 

To evaluate the quality of synthetic camera data, similarity measures of various kinds 

can be an appropriate method. In the research project [KID22], such metrics on 

different levels (pixel level, image level, and DNN-feature level) are discussed and 

evaluated. It turned out that there is no easy way to set these measures into a relation 

to the compared images. Therefore, a further perspective is applied: It should be 

remembered that the main goal of this evaluation is to ensure that the synthetic images 

resemble the real ones in such a way that makes no difference, e.g., whether a neural 

network object detector “looks” at real or synthetic images. That means comparing 

the object detection performances on both the real and synthetic images can reveal 

which image distances, measured by the distance metrics, play a role at all in the 

differentiation of real and simulated images (from the viewpoint of a neural net). 

Approaches for evaluating the similarity of Lidar data are discussed in [WAL22]. 

This quality indicator validates the generated scenario, the traffic simulation, and also 

the sensor simulation. 

2.3 Quality Indicator III: Validation of the sensor simulation and the 

virtualization of the perception 

Evaluating the similarity of the recorded onboard-perception output (e.g., object list 

or camera 2-D bounding boxes) and the output generated by the perception in the 

virtualized AD, additionally allows for proving the trustworthiness of the sensor 

simulation. This test confirms that the fidelity of the sensor simulation reaches at least 

a sufficient level for the intended purpose of the test. Due to the trade-off between 

performance and simulation accuracy, a higher level of sensor simulation fidelity is 

even not desired. 

 

Figure 5: Validation of the sensor simulation and the virtualization of the perception 

This third quality indicator (III) was implemented as a proof-of-concept for the here 

proposed approach using the dSPACE End-to-End Simulation and Validation Tool 

Suite.  



 

 

For this demonstration, we implemented a prototype device-under-test (DUT) based 

on a pre-trained YOLOv4-Network [BOC20] for object detection in RTMaps. The 

same RTMaps-based DUT implementation was integrated into a SIL simulator using 

dSPACE ASM for Traffic and Vehicle Dynamics simulation and dSPACE 

AURELION for physics-based sensor simulation.  

Test drive recordings of a busy Korean inner-city scenario, recorded by an AD 

prototype vehicle from the Korea Intelligent Automotive Parts Promotion Institute 

(KIAPI) serves as a basis for the process. The data was transformed into a simulation 

scenario using the dSPACE Scenario Generation service. 

 

Figure 6: Demonstration setup for quality indicator III 

The metric used in this example is based on the 2-D bounding boxes of the detected 

vehicles. An Intersection-over-union(IoU)-based approach is applied to the 2-D 

bounding boxes generated on real and synthetic camera data to quantify the similarity 

in each frame/simulation time step. By using confusion matrix and comparing the 

results of the object hypothesis for the simulation and the measured data an assessment 

of the quality of the 3D environment can be performed.  

 

 

Figure 7: Object detections by YOLOv4 on real-world data (left) compared to 

simulation data (right) for timeframe 00:03.238 



 

 

Figure 7 shows the real camera data including the bounding boxes detected by the 

YOLOv4 detector on real and simulated camera data for timeframe 00:03.238. You 

can clearly see that all relevant vehicles are detected similarly well in both images.  

 

 

Figure 8: Object detections by YOLOv4 on real-world data (left) compared to 

simulation data (right) for timeframe 00:10.521 

In timeframe 00:10.521 (Figure 8), major differences become obvious. Due to slight 

inaccuracies in the generated dynamic scenario and due to different 3-D geometries 

used for the yellow bus, the pedestrian on the real image (left) is still occluded by the 

bus, whereas it is already visible in the simulation data (right). Additionally, the bus 

is still detected in the real data. Because of the two completely distinct detections, the 

IoU-based metric drops in this frame.  

This difference in detections is noted by the defined metrics established to judge the 

similarity of simulation and reality in this quality indicator (III). This dropping metric 

is a trigger for further investigation of the simulation with this scenario. In a review, 

an engineer can check if this difference in simulation and reality is a serious issue for 

the meaningfulness of the test or if the simulation still sufficiently covers all required 

effects for the intended tests. 

2.4 Quality Indicator IV: Validation of the virtualization of the driving function 

& vehicle simulation 

Finally, the last quality indicator (IV) proves that the whole virtualized DUT behaves 

similarly enough in the simulator compared to the real test drive. The complete signal 

chain is involved in this test and additionally the control-loop is closed in the 

simulator. 



 

 

Similarity metrics in this quality indicator (IV) can be derived by comparing the ego 

vehicle’s motion profile and/or the actuator commands of the AD on a temporal basis, 

or by comparing typical KPIs for scenario criticality like time-to-collision (TTC), 

post-encroachment-time (PET), or gap time (GT) in the recorded real object-list and 

the synthetic. 

A good result in this final quality indicator indicates validity of the overall simulation. 

 

Figure 9: Validation of the virtualization of the driving function & vehicle 

simulation 

2.5 Summary for scenario, model, and simulator validation 

Each of these validation steps / quality indicators increases the confidence level of the 

simulator, models and scenarios used in the validation process. A good result in 

quality indicator IV already gives a mature hint of the accuracy and validity of the 

whole simulation, but also the proposed upstream quality indicators I - III help to find 

deviations and to understand the fidelity of the simulation. Depending on the 

algorithm to be developed dedicated key performance indicators (KPIs) must be 

defined for a quality assessment. 

Each scenario that has successfully run through this process is a mature starting point 

for further simulation-based validation activities such as analysis of critical situations 

or other issues (e.g., disengagements), regression tests or large-scale validation 

applying scenario-based testing. 

3 Collection of the right scenarios to cover the ADs ODD 

To address the second key aspect for validation of ADs (“2. Using the right simulation 

scenarios that cover the relevant real-world scenarios”) mentioned in the introduction, 

each relevant scenario validated as described in the previous chapter is a valuable 

contribution to the trustworthiness argument of the complete simulation-based 

validation process of the AD. These scenarios are the basis for setting up a collection 

of relevant scenarios fitting to the ODD. 



 

 

3.1 Reducing the unknown risks: Scenario-based testing using ODD- and 

driving-function-specific real-world scenarios 

A major challenge in compiling a set of scenarios and test cases for validation of a 

certain AD is to prove test coverage of the ODD. Scenario-based testing allows to 

explore the test space around each known scenario and especially to create critical 

situations by intelligent parameter variations. However, the covered region of the 

ODD is limited to the scenarios provided as a starting point for scenario-based testing. 

Using generic scenario databases is required to establish a good base coverage but 

suffers from the lack of ODD-specific scenarios and especially driving-function-

specific scenarios due to the diversity of the ODD and, for example, the ODDs 

regional aspects. Hence, even though some regions of the required test space might 

be covered well, others might not be covered because the required logical scenarios 

are unknown as Figure 10 illustrates. 

 

Figure 10: Schematic illustration of ODD coverage and test-space exploration by 

integration real-world scenarios and scenario-based testing 

The development and validation process of an AD is supported by an enormous 

number of hours of test drives. In these test drives, the AD is exposed to realistic 

traffic situations that also need to be part of the simulation-based validation process. 

With each scenario experienced in a test drive, a new starting point for scenario-based 

testing can be derived by generating a simulation scenario from the recorded 

measurement data and adding it to the scenario library. Comparing the identified 

scenarios with scenarios already present in the scenario database enables targeted 

assembly of the scenario database. A suitable scenario- and data-management-system 

using an ODD-description as a structuring mechanism is a pre-condition of this 

approach.  

With this approach, it is possible to continuously complement the scenario library by 

ODD- and driving-function-specific scenarios, fill up uncovered regions in the ODD 

and hence finally reduce the number of unknown risks for the AD. 



 

 

4 Conclusion 

Chapter 2 describes how we can ensure that the simulation and each used scenario 

accurately cover reality for the desired testing purpose. On top of that, chapter 3 

describes how to ensure that the scenarios used in the simulation-based validation are 

relevant for the ODD and cover the required test-space. In both cases, the usage of 

digital twins of real-world scenarios is an important building block.  

Combining both methods in a continuous process applied during pre-development, 

series-development, and fleet-operation ensures a comprehensive argument for 

trustworthiness of the simulation and hence the validity of the simulation-based 

homologation process. With its comprehensive data-driven toolchain for simulation 

and validation, dSPACE supports the proposed approach in all stages. 
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