
Simulation of Virtual ECUs in the context of ECU Consolidation

Nicolas Amringer, Synopsys GmbH, Germany
nicolas.amringer@synopsys.com

Peter Asemann, Elektrobit Automotive GmbH, Germany
peter.asemann@elektrobit.com

Abstract: Automotive electrical/electronic (E/E) architectures need to be
transformed to meet the requirements of future vehicles, such as autonomy
and connectivity. One concrete transformation step is to reduce the number
of Electronic Control Units (ECUs) from up to 150 to a significantly smaller
number by consolidating ECU Software (SW) stacks from various distributed
onto a few centralized ECUs. Multicore and hypervisor technologies enable
the consolidation of ECUs, on the other hand, software complexity is ex-
pected to increase sharply. For example, the number of lines of code per vehi-
cle is expected to increase from 100 to 300 million by 2030. Therefore, ECU
testing is becoming increasingly important. Virtual ECUs (vECUs) can be
used to execute and test ECU SW stacks in PC-based simulations by replac-
ing the hardware-dependent with simulator-dependent software. This work
gives first an introduction to vECUs, especially Level 3 vECUs, and how
they can be used in simulations. Next, ECU consolidation and its impact on
ECU SW stacks and vECU simulations is examined. Two concrete use cases
are described in this context. A summary and outlook follow at the end.

1 Introduction

Virtual ECUs
Virtual ECUs enable the execution of ECU SW stacks in PC-based simulations inde-
pendent of the availability of real ECUs and prototypes. This brings, for example, the
following advantages over testing with real hardware:

• Cheaper test setups

• Earlier testing / faster feedback loops

• Better scalability

• Support of code-level debugging

Depending on the amount of production ECU SW that is executed in PC-based simula-
tions, [IVI20] defines 5 different vECU Levels – ranging from Level 0 to Level 4. A
Level 0 vECU does not contain any production ECU SW (e.g. software interfaces) and
consists only of a controller model or code generated from the controller model. Level 4
vECUs contain the complete production ECU SW stack as it can be flashed on a real
ECU.



This includes, for example, the application and basic software that use the instruction set
of the target microcontroller, as well as drivers with hardware-dependent accesses. The
simulation of a Level 4 vECU is complex and requires an instruction set simulator (ISS)
and appropriate hardware models. Tools like Synopsys Virtualizer support the simulation
of Level 4 vECUs.

Level 3 Virtual ECU Simulation
This work focuses on Level 3 vECUs which contain only the hardware-independent parts
of the production ECU SW stack. This includes the application and basic software, but not
the drivers and the operating system. The instruction set of the target microcontroller does
not matter for Level 3 vECUs, instead the ECU SW is compiled for the PC instruction
set (e.g. x86). The simulation of a Level 3 vECU can be performed by replacing the
hardware-dependent parts of the production ECU SW stack with simulator-dependent
software. This is possible, for example, because most of today’s ECU SW stacks follow
a software architecture, where hardware accesses are typically made through dedicated
(and standardized) interfaces and on hardware-related software layers. A widely used
standard is for example AUTOSAR – AUTomotive Open System ARchitecture.

Figure 1 shows a Level 3 vECU containing ECU SW according to the AUTOSAR Classic
standard. For the sake of clarity, the AUTOSAR runtime environment (RTE) is not
shown. The application software is typically provided by an OEM or Tier 1, while
tool vendors typically provide the basic software and semiconductors the drivers (see
microcontroller abstraction layer). In this example, the Elektrobit (EB) basic software
(EB tresos AutoCore) is used, but it could also be any other AUTOSAR stack. The
AUTOSAR operating system and the microcontroller abstraction layer (MCAL) are pro-
vided by Synopsys Silver – a PC-based simulator for Level 1, 2 and 3 vECUs. In this case
hardware-dependent software is completely replaced by simulator-dependent software.
There might also be cases where it is possible to simulate the hardware-independent parts
of the hardware-dependent, production AUTOSAR operating system and MCAL. How-
ever, this will not be discussed further here, as this work focuses on approaches based on
standardized interfaces and software layers.

Figure 1: Level 3 vECU: Simulation of application software and EB basic software
(EB tresos AutoCore) with Synopsys Silver. Gray colored parts are replaced.



Another important aspect offered by vECUs is the possibility of real-time independent
execution. In a discrete-event simulation (DES), a vECU can run on a virtual-time base,
allowing it to run slower or faster than the real ECU (real-time). During the execution
of events the virtual-time does not pass. For example, it is possible for two or more
vECUs to communicate over a virtual bus without considering the bandwidth limitations
or delays of the real vehicle bus – the bus communication is idealized because the virtual
time does not increase until all bus data has been transmitted from the sending to the
receiving vECU. Of course, it is also possible to perform a detailed simulation taking into
account delays, bandwidth limitations or other details of the real vehicle communication.

Figure 2 shows two Level 3 vECUs using an EB tresos AutoCore basic software stack
and exchanging bus data at the bus frame level (e.g. Ethernet frames). For this purpose,
each vECU is connected via an AUTOSAR MCAL driver to a virtual device provided
by Synopsys Silver. The communication between the AUTOSAR MCAL driver and the
virtual device is based on a simulator-dependent interface. This interface is abstract in
the sense that drivers do not access virtual device registers, but use an API to trigger the
transmission and reception of bus frames, for example. On the other hand, virtual devices
are also not realized as high-fidelity hardware models, but as abstract models which, for
example, do not expose any registers to the drivers above. Bus frames provided by the
drivers can be transferred from the virtual device over the virtual bus by providing the
data at a shared memory location. In the next section, the impact of ECU consolidation
on ECU SW stack is considered.

Figure 2: Virtual bus communication between two Level 3 vECUs.

2 ECU Consolidation

The simulation of vECUs will become increasingly important in the future as the pro-
portion of software in vehicles will increase sharply over the next years. On the other
hand, adding more ECUs to vehicles is not possible for several reasons: weight, costs,
and power distribution.



To cope with this, E/E architectures need to be transformed into centralized architectures,
where various decentralized ECU SW stacks are consolidated on single high-performance
ECUs. A promising approach that enables the consolidation of ECUs in real vehicles is
virtualization. Modern microcontroller even offer hardware-assisted virtualization sup-
port for such use cases. Multiple ECU SW stacks can be executed on a single ECU by
using hypervisor technology that allows not only hardware sharing but also isolation be-
tween ECU SW stacks with different safety requirements (freedom from interference).
This separation can also enable the use of ECU SW stacks from different vendors, that
can be independently developed, tested, updated and certified.

Figure 3 shows distributed ECUs communicating via a real bus that have been consoli-
dated on a single ECU. Each of the ECU SW stacks (distributed ECUs) resides in a virtual
machine (VM) that is executed on top of a hypervisor which runs bare-metal on the un-
derlying hardware. ECU SW stacks use drivers to access virtual devices provided by the
hypervisor – virtual devices may have real and even shared counterparts (see dashed line).
Communication between VMs (inter-VM) can be realized by using a virtual bus, which
may have been a real bus in the distributed E/E architecture.

Figure 3: ECU consolidation: Execution of multiple ECU SW stacks on a single ECU,
enabled by a hypervisor.

Virtual I/O Device (VIRTIO) is a promising standard that allows access to virtual de-
vices via standardized interfaces. VIRTIO postulates paravirtualization, which comes
with the requirement that the guest (see virtual machines in Figure 3) software must be
prepared for virtualization and is aware of being virtualized. On the other hand, paravir-
tualization is becoming increasingly popular. One of the reasons for this is the higher
performance compared to classic virtualization approaches, such as those described by
[PG74]. VIRTIO was initially driven by Rusty Russell [Rus08] and is standardized by the
Organization for the Advancement of Structured Information Standards (OASIS).



Today, VIRTIO can be considered the de facto standard for paravirtualization, which is
also becoming increasingly important in the automotive industry (see e.g. SOAFEE1

[Spe21]). Linux, which is also attracting more and more attention in the automotive in-
dustry, but also infotainment operating systems, such as Android Automotive OS [OS22],
and real-time operating systems (RTOS) already support VIRTIO.

Figure 4 show the high-level architecture of VIRTIO which consists of a frontend (FE)
and backend (BE) driver as well as a device. The communication between the VIRTIO
FE and BE driver is based on so called virtqueues – a virtqueue is basically a queue of
buffers [Rus08]. For example, a VIRTIO network driver (VIRTIO-net driver) can use one
virtqueue for sending and one for receiving Ethernet frames.

VIRTIO is not only relevant for ECU consolidation uses cases where a hypervisor is used,
but also in hypervisor-less use cases. In the next section, the impact of both uses cases on
vECU simulations is considered.

Figure 4: VIRTIO high-level architecture: Frontend (FE) and backend (BE) driver com-
municate via virtqueues.

3 ECU Consolidation and Virtual ECU Simulation

Hypervisor Use Case
Figure 5 shows the simulation of an EB AUTOSAR Classic and Adaptive ECU SW stack
(EB corbos Adaptive Core and EB corbos Linux) with Synopsys Silver. As shown in
Figure 3, it is assumed that both software stacks have been consolidated on a single ECU
to be executed on a hypervisor in the real vehicle and that the real bus communication
(here Ethernet) of the distributed setup is replaced by virtual bus communication provided
by the hypervisor. By using a hypervisor, the ECU SW stacks can be decoupled from the
underlying hardware. On the other hand, VIRTIO enables the decoupling between ECU
SW stacks and the underlying hypervisor. In this concrete use case, the VIRTIO-net FE
driver is provided by EB and part of the ECU SW stacks that can be executed in the real
vehicle. For simulation purposes, Synopsys Silver provides the virtual Ethernet devices
as well as the VIRTIO-net BE driver. Here, a hypervisor (on top of Windows® / Linux®)
is used to simulate EB corbos Adaptive Core and EB corbos Linux with Synopsys Silver.

1EB and Synopsys are members of the Scalable Open Architecture for Embedded Edge (SOAFEE) project.



In comparison to VIRTIO, the AUTOSAR MCAL is typically provided by the semicon-
ductor vendor of the microcontroller and hardware-dependent (see section 1). In situa-
tions where an AUTOSAR Classic stack is executed on top of a hypervisor, either the
hypervisor has to provide a hypervisor-dependent interface (hypercall interface) that can
be used in the AUTOSAR MCAL of the corresponding ECU SW stack, or the AUTOSAR
MCAL has to be based on VIRTIO. EB, for example, provides a VIRTIO driver for
AUTOSAR Classic that can be used in this use case.

Figure 5: ECU consolidation: Simulation of an EB AUTOSAR Classic and Adaptive
ECU SW stack with Synopsys Silver.

Hypervisor-Less Use Case
Open Asymmetric Multi-Processing (OpenAMP) [Ope22] and RPMsg-Lite [RPM21]
are two frameworks that can be used for shared memory communication on multicore
ECUs. Even though the shared memory communication can be done via a hypervisor,
it is not required. OpenAMP and RPMsg-Lite are both using VIRTIO as an interface to
hardware- or hypervisor-dependent software. For example, Figure 6 shows that both tech-
nologies use the Remote Processor Messaging (RPMsg) framework on top of a VIRTIO
FE driver. RPMsg [RpM22] provides an interface that can be used by applications to
send and receive messages between different ECU SW stacks via communication chan-
nels realized in shared memory. AUTOSAR Classic does not standardize shared memory
communication, but offers the concept of complex device drivers (CDDs). For example,
a CDD makes it possible to integrate special software that is not specified in AUTOSAR
– OpenAMP and RPMsg-Lite are just two examples here.

Figure 7 shows how two ECU SW stacks that share memory in the real vehicle can be
simulated with Synopsys Silver. Again, virtual devices are provided by Synopsys Silver to
enable the communication between the ECU SW stacks – in this case the shared memory
communication of the real ECUs is realized by the virtual bus provided by Synopsys
Silver. Also in this use case, a hypervisor is used to simulate the Linux ECU SW stack
with Synopsys Silver.



Figure 6: OpenAMP / RPMsgLite high-level architecture: Hardware-independent shared
memory communication enabled by VIRTIO (FE driver).

Figure 7: ECU consolidation: Simulation of RPMsg communication between a RTOS
(here AUTOSAR) and Linux with Synopsys Silver.

4 Summary and Outlook

This work shows that VIRTIO is an important standard for future E/E architectures. When
ECU consolidation is performed in a hypervisor use case, VIRTIO enables the decoupling
of the ECU SW stack from the underlying hypervisor. However, VIRTIO is also used in
use cases where ECU SW stacks are consolidated without using a hypervisor. In both
cases, VIRTIO provides a standardized interface and thus creates the basis for the simula-
tion of vECUs. VIRTIO can offer the possibility to run all software layers of the produc-
tion ECU SW stack in simulations without using a simulator-dependent interface (see e.g.
Figure 5). Depending on the concrete use case, Synopsys Silver provides for the simula-
tion of consolidated ECU SW stacks virtual devices / buses (e.g. Ethernet), AUTOSAR
MCAL drivers as well as VIRTIO BE drivers. EB provides AUTOSAR Classic and Adap-
tive ECU SW stacks including VIRTIO FE drivers.



In the future, VIRTIO will continue to gain relevance for the automotive industry and
will be further developed (see e.g. [Spe21]). At the time of writing (June 2022), the
specification for VIRTIO-can (Controller Area Network) was under review [MH21] and
a CAN device ID was already reserved in the draft VIRTIO 1.2 committee specification
[OAS22].

References

[IVI20] Prostep IVIP. Smart Systems Engineering – Requirements for the Stan-
dardization of Virtual Electronic Control Units (V-ECUs). Prostep IVIP
White Paper 2020-3 / V 1.0, 2020. Accessed 31-May-2022: https:
//www.prostep.org/fileadmin/downloads/WhitePaper_V-
ECU_2020_05_04-EN.pdf.

[MH21] Harald Mommer and Stefan Hajnoczi. RFC: virtio-can: Add the device
specification, 2021. Accessed 27-Jun-2022: https://markmail.org/
thread/hdxj35fsthypllkt.

[OAS22] OASIS Open. Virtual I/O Device (VIRTIO) Version 1.2. Oasis committee spec-
ification draft 01, 09 May 2022. Edited by Michael S. Tsirkin and Cornelia
Huck. https://docs.oasis-open.org/virtio/virtio/v1.2/
csd01/virtio-v1.2-csd01.html. Latest stage: https://docs.
oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html.

[Ope22] OpenAMP (Open Asymmetric Multi-Processing), 2022. Accessed 27-Jun-
2022: https://www.openampproject.org.

[OS22] Android Automotive OS. Virtualization Overview, 2022. Accessed 27-Jun-
2022: https://source.android.com/devices/automotive/
virtualization.

[PG74] Gerald J. Popek and Robert P. Goldberg. Formal Requirements for Virtualizable
Third Generation Architectures. Commun. ACM, 17(7):412–421, 1974.

[RPM21] RPMsg-Lite User’s Guide Rev. 3.2.0 / 11.0, 2021. Accessed 27-Jun-2022:
https://nxpmicro.github.io/rpmsg-lite.

[RpM22] Remote Processor Messaging (rpmsg) Framework, 2022. Accessed 27-Jun-
2022: https://docs.kernel.org/staging/rpmsg.html.

[Rus08] Rusty Russell. Virtio: Towards a de-Facto Standard for Virtual I/O Devices.
SIGOPS Oper. Syst. Rev., 42(5):95–103, 2008.

[Spe21] Matt Spencer. How the SOAFEE Architecture Brings A Cloud-Native
Approach To Mixed Critical Automotive Systems. Arm white pa-
per, September 2021. Accessed 27-June-2022: https://armkeil.
blob.core.windows.net/developer/Files/pdf/white-
paper/arm-scalable-open-architecture-for-embedded-
edge-soafee.pdf.

https://www.prostep.org/fileadmin/downloads/WhitePaper_V-ECU_2020_05_04-EN.pdf
https://www.prostep.org/fileadmin/downloads/WhitePaper_V-ECU_2020_05_04-EN.pdf
https://www.prostep.org/fileadmin/downloads/WhitePaper_V-ECU_2020_05_04-EN.pdf
https://markmail.org/thread/hdxj35fsthypllkt
https://markmail.org/thread/hdxj35fsthypllkt
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html
https://www.openampproject.org
https://source.android.com/devices/automotive/virtualization
https://source.android.com/devices/automotive/virtualization
https://nxpmicro.github.io/rpmsg-lite
https://docs.kernel.org/staging/rpmsg.html
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-scalable-open-architecture-for-embedded-edge-soafee.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-scalable-open-architecture-for-embedded-edge-soafee.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-scalable-open-architecture-for-embedded-edge-soafee.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-scalable-open-architecture-for-embedded-edge-soafee.pdf

	Introduction
	ECU Consolidation
	ECU Consolidation and Virtual ECU Simulation
	Summary and Outlook

