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Abstract: Current automotive development projects often focus on 
autonomous driving and steer-by-wire and therefore require higher 
functional safety requirements. Besides these higher ASIL-levels, 
additional challenges arise from shorter development cycles and 
continuous pressure on cost. To meet these conflicting requirements the 
software and the hardware architecture need to be jointly analyzed and 
optimized early on in the development process.  

This presentation shows the early architecture analysis of an ASIL-D 
electric power steering application. First a workload model is generated 
by combining software execution traces from a previous generation 
physical and a virtual hardware prototype. The workload model is then 
used to explore several optimizations of the next generation software and 
hardware architecture under consideration of the overall safety goals. 
Short feedback loops enable fast development progress and decision 
making during these studies. 

1 Introduction 

The recent chip hardware crisis shows a high need of optimization to be able to use 
current hardware platforms to their full potential. In the process of hardware-software 
co-partitioning, the hardware is modified to the specific needs of the software. 
Meanwhile, the software is tailored to use special features of the hardware to achieve 
higher throughput, power efficiency or reliability. Rising demands of requirements, 
such as increasing ASIL-levels or cost cutting of the hardware platform, create a need 
for advanced modeling capabilities. [1] 
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The following article shows a setup for creating an abstract software model, called 
workload, early in the design process of a system with high functional safety 
standards. The model contains runtime information and analysis of the most common 
bottlenecks in execution behavior, but is otherwise non-functional. This model is 
executed on a virtual hardware platform called a VPU. The second key component is 
a level 41 virtual ECU that is ISO 26262-8 qualified in order to be used for ISO26262-
6 compliant software testing. A real hardware counterpart also exists and may be used 
to generate software execution trace data on a real platform. In terms of the V-model2 
, this approach resides on the side in the area of hardware and software design and 
analysis. 
The expected and achieved benefit is a very fast what-if analysis for software 
architecture evaluation and optimization that can be backported to the real software 
structure. Practical questions can include the possibility of running the software on a 
two-core system instead of three cores. Additionally, the results may impact the next 
generation of the hardware specification.  

2 Virtual ECU Level 4 

A key part of the project is the use of a level 4 virtual ECU. It allows the execution of 
the unmodified and un-instrumented software binary in a complete representation of 
the software environment including a bus simulation, sensors and actors. Timing 
information during instruction execution is implemented as thoroughly as possible. 
The system is used for gathering software execution data such as program flow traces 
or function traces, memory access data for all CPU cores and DMA transfers. Due to 
the structure of the distributed memory hardware, the access information should also 
include the memory regions that are being accessed. [2, 3] 
Usage of debug hardware allows the creation of software execution traces as well, 
although the amount of data is limited due to limited bandwidth . By using standard 
file formats, the workload model can be created from either real hardware or virtual 
platforms. Table 1 gives an overview of data sources. 

Table 1: Data acquisition sources for generation of the VPU and workload model. 

 Real hardware Virtual hardware Format 
Function trace X X Binary or text file 
Instruction trace Limited time Unlimited time Binary or text file 
Access to Data RAM - X Text file 
Access to Data 
Cache 

Limited via 
performance 

counters 

X Text file 

                                                           
1 https://www.prostep.org/fileadmin/downloads/WhitePaper_V-ECU_2020_05_04-EN.pdf 
 
2 V-model for mechatronic systems development (after Bender*, 2004), for example 
"PSI 11 - Smart Systems Engineering - Simulation Model Exchange", version 2.0, prostep ivip, 
https://www.prostep.org/fileadmin/downloads/prostep-ivip-Recommendation_PSI11_SmartSE_V2-0.zip 
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The device under test (DUT) is a AutoSAR compatible real-time software. It consists 
of approximately 50 tasks and runs on three cores. It makes heavy use of inter-core 
communication and peripheral access. Hardware interruptions cause a non-
deterministic execution profile in reality through shifting task execution. Task 
priorities and several task periods in the range from 200 µs to 10 ms shape a complex 
execution pattern that needs to be modeled in the software model as thoroughly as 
possible. 

3 Platform overview 

In general, the abstract platform, like it is shown in Figure 1, consists of the following 
components: 

• VPU -  the abstract hardware platform 

• Workload - represents a non-functional model of the executed software 

• Mapping -  combines the workload with execution units of the VPU 

• Simulation scenario -  runs a specific mapping and executes the workload 
model on the VPU 

 

Figure 1: Optimization flow with target and virtual hardware data sources. 

The platform consists of static parts that can be derived from the target hardware 
specifications. Statistical data parametrizes complex components such as busses and 
hardware such as Flexray or CAN controllers. Test data acquired from real 
measurements serves as a basis for re-creation of realistic behaviour in the model 
where applicable, mostly used for memory accesses from CPU cores and DMA 
transfers. Figure 2 shows an overview of the VPU structure. [5] 
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Figure 2: VPU implementation on Platform Architect. 

The current implementation creates the abstract software model in the form of 
AutoSAR tasks. An implementation of a task scheduler is able to interrupt running 
tasks as they happen in real-time with software or hardware interruptions. Memory 
accesses are modelled in detail through files that include the individual access ports 
and the memory regions accessed. The delay resulting from these accesses is also 
modelled, so that bus congestion on the memory bus can be analysed later on. All 
steps are highly automated and can further be customized. The resulting task structure 
is called a task graph or workload model.  
The task graph can be executed as it is as a standalone, although it makes more sense 
to run it on an abstract hardware platform. It is matched to this platform via a mapping 
description, that defines which task runs on which resource, either on a CPU core or 
a DMA controller. The results from this step is a software execution trace, similar to 
a trace that can be generated from the real hardware, for example in a BTF file format. 
Comparable to the vECU, all models inside the VPU can be traced as well. This allows 
the identification of bus-load bottlenecks due to memory or peripheral access 
limitations. 
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4 Possible Optimizations 

The level of abstraction of the setup allows many different optimization procedures. 
Typical changes include changing the VPU or the model, where VPU changes 
resemble modifications to the hardware. Simple changes can be carried out if the 
hardware supports these changes like changing the clock or bus frequencies while 
other changes, such as a higher IPC, optimized instructions or the implementation of 
co-processors, have to be implemented by the hardware vendor. Changes to the 
workload include remapping of memory access across different cores, memory 
alignment or the task distribution across the different cores. The dynamic behavior of 
the model allows for examination of these changes in greater detail than a static 
analysis normally does. Typically, linear scaling of one parameter does not scale the 
performance of the rest of the system in a linear way due to additional constraints. 

5 Examples 

Workload characterization 
Some optimizations can be identified as early as in the acquisition of the execution 
trace data stage. Identifying processing and memory access ratios for individual tasks 
provides an overview of the execution profile of the software. In this step optimization 
opportunities, such as alleviating bottlenecks in the memory access, can be 
determined. Furthermore, memory alignment can be checked according to the 
hardware platform as every relevant memory access is profiled. 

Task restructuring analysis 
An example for a simple what-if analysis is the remapping of a task from one core to 
another. The goal is to reach a better load distribution between the individual cores or 
optimize execution speed in the critical path. Additional constraints are task priorities 
and interruptions during software execution. Depending on the complexity of the task 
and modelling depth, remapping of memory accesses may be necessary in order to 
further optimize during this stage of the process. To analyze and solve these issues 
procedures such as a deadline violation analysis for real time systems can be 
performed. 

Bus access optimization 
Assuming a core (Core 0) performs an access memory read operation from another 
core (Core 1). This access is executed over the memory bus with a certain delay. Each 
signal goes through a decision process for placement in a memory region. This is done 
by a linker while compiling via configuration file or automatically without the 
knowledge of runtime information. In a typical use case, Core 1 additionally performs 
read or write accesses to its memory region. If the amount of accesses from Core 0 
exceeds that from Core 1 it may make sense to move this memory region to a memory 
that is local to Core 0 as shown in Figure 3. 
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Figure 3: Example structure for connections of the CPUs and the memory- and 
peripheral bus. 

These accesses are counted during the characterization phase of the workload. In a 
second step, a preliminary approximation of a possible gain is calculated to find better 
potential locations for memory region placement. Usually, the memory regions are 
not isolated but consist of inseparable complex data structures and a projection of the 
entire structure should therefore be performed. The platform allows to modify the 
model according to these results and make a projection of the achievable 
improvement. In the final step, this optimization can be ported to the real hardware, 
for example with a linker file. The software has to be recompiled and can be executed 
on the virtual prototype or flashed to the hardware. The improvement can be as 
significant as several percent, as has been shown for other link time optimization 
approaches too [4].  

6 Testing impact 

It is vital to note the discrepancy between prediction and reality in the analysis 
process. Changes in the software model may be relatively simple to implement but 
carrying the same changes on the hardware counterpart may prove to be nearly 
impossible. The shown analysis steps give hints for possible optimizations, but all 
changes still need to be reviewed by a formal validation process for architectural 
changes. In the end a full functional test needs to be performed on the modified 
software on traditional teststands like HiL-systems or virtual ECUs in order to make 
sure that the changes did not cause any safety impact nor violation. 
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7 Conclusion and outlook 

Software abstraction is a way to use an abstract design process on the left side of the 
V-model. When performed in addition to the virtual and real hardware test stands, this 
procedure serves to close gaps in the testing process. Fast what-if analyses give a 
benefit to the user when the software design does not match the used hardware or 
quickly made changes of the requirements. The model is able to vary over several 
degrees of abstraction. Our current focus lies on optimizing memory transactions due 
to the fixed hardware implementation. Naturally, the model could be expanded to 
include more complex hardware for measurement acquisition or communications that 
are included in the workload. Initial optimization results show improvements of 
several percent CPU load with minimal changes to the software by using a static 
analysis of the memory alignment and a linker step optimization process. The current 
status does not yet enable optimization of the software to fulfill the 2 core lock-step 
requirement, although every optimization gives more headroom for higher safety 
margins or new features. The next steps include analysis of the instruction stream in 
order to gain deeper insights into the hardware platform. 
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