

CONFIDENTIAL

ASIL-D workload projection and optimization using PA Ultra and
Virtualizer

Matthias Glück*, Robert Evert **

* Volkswagen Group Components, matthias.glueck@volkswagen.de

** MicroNova AG, robert.evert@micronova.de

Abstract: Current automotive development projects often focus on
autonomous driving and steer-by-wire and therefore require higher
functional safety requirements. Besides these higher ASIL-levels,
additional challenges arise from shorter development cycles and
continuous pressure on cost. To meet these conflicting requirements the
software and the hardware architecture need to be jointly analyzed and
optimized early on in the development process.

This presentation shows the early architecture analysis of an ASIL-D
electric power steering application. First a workload model is generated
by combining software execution traces from a previous generation
physical and a virtual hardware prototype. The workload model is then
used to explore several optimizations of the next generation software and
hardware architecture under consideration of the overall safety goals.
Short feedback loops enable fast development progress and decision
making during these studies.

1 Introduction

The recent chip hardware crisis shows a high need of optimization to be able to use
current hardware platforms to their full potential. In the process of hardware-software
co-partitioning, the hardware is modified to the specific needs of the software.
Meanwhile, the software is tailored to use special features of the hardware to achieve
higher throughput, power efficiency or reliability. Rising demands of requirements,
such as increasing ASIL-levels or cost cutting of the hardware platform, create a need
for advanced modeling capabilities. [1]

CONFIDENTIAL

The following article shows a setup for creating an abstract software model, called
workload, early in the design process of a system with high functional safety
standards. The model contains runtime information and analysis of the most common
bottlenecks in execution behavior, but is otherwise non-functional. This model is
executed on a virtual hardware platform called a VPU. The second key component is
a level 41 virtual ECU that is ISO 26262-8 qualified in order to be used for ISO26262-
6 compliant software testing. A real hardware counterpart also exists and may be used
to generate software execution trace data on a real platform. In terms of the V-model2
, this approach resides on the side in the area of hardware and software design and
analysis.
The expected and achieved benefit is a very fast what-if analysis for software
architecture evaluation and optimization that can be backported to the real software
structure. Practical questions can include the possibility of running the software on a
two-core system instead of three cores. Additionally, the results may impact the next
generation of the hardware specification.

2 Virtual ECU Level 4

A key part of the project is the use of a level 4 virtual ECU. It allows the execution of
the unmodified and un-instrumented software binary in a complete representation of
the software environment including a bus simulation, sensors and actors. Timing
information during instruction execution is implemented as thoroughly as possible.
The system is used for gathering software execution data such as program flow traces
or function traces, memory access data for all CPU cores and DMA transfers. Due to
the structure of the distributed memory hardware, the access information should also
include the memory regions that are being accessed. [2, 3]
Usage of debug hardware allows the creation of software execution traces as well,
although the amount of data is limited due to limited bandwidth . By using standard
file formats, the workload model can be created from either real hardware or virtual
platforms. Table 1 gives an overview of data sources.

Table 1: Data acquisition sources for generation of the VPU and workload model.

 Real hardware Virtual hardware Format
Function trace X X Binary or text file
Instruction trace Limited time Unlimited time Binary or text file
Access to Data RAM - X Text file
Access to Data
Cache

Limited via
performance

counters

X Text file

1 https://www.prostep.org/fileadmin/downloads/WhitePaper_V-ECU_2020_05_04-EN.pdf

2 V-model for mechatronic systems development (after Bender*, 2004), for example
"PSI 11 - Smart Systems Engineering - Simulation Model Exchange", version 2.0, prostep ivip,
https://www.prostep.org/fileadmin/downloads/prostep-ivip-Recommendation_PSI11_SmartSE_V2-0.zip

CONFIDENTIAL

The device under test (DUT) is a AutoSAR compatible real-time software. It consists
of approximately 50 tasks and runs on three cores. It makes heavy use of inter-core
communication and peripheral access. Hardware interruptions cause a non-
deterministic execution profile in reality through shifting task execution. Task
priorities and several task periods in the range from 200 µs to 10 ms shape a complex
execution pattern that needs to be modeled in the software model as thoroughly as
possible.

3 Platform overview

In general, the abstract platform, like it is shown in Figure 1, consists of the following
components:

• VPU - the abstract hardware platform

• Workload - represents a non-functional model of the executed software

• Mapping - combines the workload with execution units of the VPU

• Simulation scenario - runs a specific mapping and executes the workload
model on the VPU

Figure 1: Optimization flow with target and virtual hardware data sources.

The platform consists of static parts that can be derived from the target hardware
specifications. Statistical data parametrizes complex components such as busses and
hardware such as Flexray or CAN controllers. Test data acquired from real
measurements serves as a basis for re-creation of realistic behaviour in the model
where applicable, mostly used for memory accesses from CPU cores and DMA
transfers. Figure 2 shows an overview of the VPU structure. [5]

CONFIDENTIAL

Figure 2: VPU implementation on Platform Architect.

The current implementation creates the abstract software model in the form of
AutoSAR tasks. An implementation of a task scheduler is able to interrupt running
tasks as they happen in real-time with software or hardware interruptions. Memory
accesses are modelled in detail through files that include the individual access ports
and the memory regions accessed. The delay resulting from these accesses is also
modelled, so that bus congestion on the memory bus can be analysed later on. All
steps are highly automated and can further be customized. The resulting task structure
is called a task graph or workload model.
The task graph can be executed as it is as a standalone, although it makes more sense
to run it on an abstract hardware platform. It is matched to this platform via a mapping
description, that defines which task runs on which resource, either on a CPU core or
a DMA controller. The results from this step is a software execution trace, similar to
a trace that can be generated from the real hardware, for example in a BTF file format.
Comparable to the vECU, all models inside the VPU can be traced as well. This allows
the identification of bus-load bottlenecks due to memory or peripheral access
limitations.

CONFIDENTIAL

4 Possible Optimizations

The level of abstraction of the setup allows many different optimization procedures.
Typical changes include changing the VPU or the model, where VPU changes
resemble modifications to the hardware. Simple changes can be carried out if the
hardware supports these changes like changing the clock or bus frequencies while
other changes, such as a higher IPC, optimized instructions or the implementation of
co-processors, have to be implemented by the hardware vendor. Changes to the
workload include remapping of memory access across different cores, memory
alignment or the task distribution across the different cores. The dynamic behavior of
the model allows for examination of these changes in greater detail than a static
analysis normally does. Typically, linear scaling of one parameter does not scale the
performance of the rest of the system in a linear way due to additional constraints.

5 Examples

Workload characterization
Some optimizations can be identified as early as in the acquisition of the execution
trace data stage. Identifying processing and memory access ratios for individual tasks
provides an overview of the execution profile of the software. In this step optimization
opportunities, such as alleviating bottlenecks in the memory access, can be
determined. Furthermore, memory alignment can be checked according to the
hardware platform as every relevant memory access is profiled.

Task restructuring analysis
An example for a simple what-if analysis is the remapping of a task from one core to
another. The goal is to reach a better load distribution between the individual cores or
optimize execution speed in the critical path. Additional constraints are task priorities
and interruptions during software execution. Depending on the complexity of the task
and modelling depth, remapping of memory accesses may be necessary in order to
further optimize during this stage of the process. To analyze and solve these issues
procedures such as a deadline violation analysis for real time systems can be
performed.

Bus access optimization
Assuming a core (Core 0) performs an access memory read operation from another
core (Core 1). This access is executed over the memory bus with a certain delay. Each
signal goes through a decision process for placement in a memory region. This is done
by a linker while compiling via configuration file or automatically without the
knowledge of runtime information. In a typical use case, Core 1 additionally performs
read or write accesses to its memory region. If the amount of accesses from Core 0
exceeds that from Core 1 it may make sense to move this memory region to a memory
that is local to Core 0 as shown in Figure 3.

CONFIDENTIAL

Figure 3: Example structure for connections of the CPUs and the memory- and
peripheral bus.

These accesses are counted during the characterization phase of the workload. In a
second step, a preliminary approximation of a possible gain is calculated to find better
potential locations for memory region placement. Usually, the memory regions are
not isolated but consist of inseparable complex data structures and a projection of the
entire structure should therefore be performed. The platform allows to modify the
model according to these results and make a projection of the achievable
improvement. In the final step, this optimization can be ported to the real hardware,
for example with a linker file. The software has to be recompiled and can be executed
on the virtual prototype or flashed to the hardware. The improvement can be as
significant as several percent, as has been shown for other link time optimization
approaches too [4].

6 Testing impact

It is vital to note the discrepancy between prediction and reality in the analysis
process. Changes in the software model may be relatively simple to implement but
carrying the same changes on the hardware counterpart may prove to be nearly
impossible. The shown analysis steps give hints for possible optimizations, but all
changes still need to be reviewed by a formal validation process for architectural
changes. In the end a full functional test needs to be performed on the modified
software on traditional teststands like HiL-systems or virtual ECUs in order to make
sure that the changes did not cause any safety impact nor violation.

CONFIDENTIAL

7 Conclusion and outlook

Software abstraction is a way to use an abstract design process on the left side of the
V-model. When performed in addition to the virtual and real hardware test stands, this
procedure serves to close gaps in the testing process. Fast what-if analyses give a
benefit to the user when the software design does not match the used hardware or
quickly made changes of the requirements. The model is able to vary over several
degrees of abstraction. Our current focus lies on optimizing memory transactions due
to the fixed hardware implementation. Naturally, the model could be expanded to
include more complex hardware for measurement acquisition or communications that
are included in the workload. Initial optimization results show improvements of
several percent CPU load with minimal changes to the software by using a static
analysis of the memory alignment and a linker step optimization process. The current
status does not yet enable optimization of the software to fulfill the 2 core lock-step
requirement, although every optimization gives more headroom for higher safety
margins or new features. The next steps include analysis of the instruction stream in
order to gain deeper insights into the hardware platform.

8 Literaturverzeichnis

[1] TEICH, Jürgen. Hardware/software codesign: The past, the present, and predicting
the future. Proceedings of the IEEE, 2012, 100. Jg., Nr. Special Centennial Issue, S.
1411-1430.

[2] Robert Evert, Andreas Drews und Stephan Schmidt , Effizient Absichern,
Virtueller Prüfstand zum Verifizieren eines Lenkungssteuergeräts,
https://www.elektroniknet.de/automotive/assistenzsysteme/virtueller-pruefstand-
zum-verifizieren-eines-lenkungssteuergeraets.186126.html, abgerufen am
14.05.2021.

[3] KANG, Kyungsu, et al. Seamless SoC Verification Using Virtual Platforms: An
Industrial Case Study. In: 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2019. S. 1204-1205.

[4] PANCHENKO, Maksim, et al. Bolt: a practical binary optimizer for data centers
and beyond. In: 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2019. S. 2-14.

[5] LU, Kuen-Long; CHEN, Yung-Yuan. SoC-Level Safety-Oriented Design Process
in Electronic System Level Development Environment. Journal of Circuits, Systems
and Computers, 2021, 30. Jg., Nr. 14, S. 2150254.

	ASIL-D workload projection and optimization using PA Ultra and Virtualizer
	Matthias Glück*, Robert Evert **
	* Volkswagen Group Components, matthias.glueck@volkswagen.de
	** MicroNova AG, robert.evert@micronova.de
	1 Introduction
	2 Virtual ECU Level 4
	3 Platform overview
	4 Possible Optimizations
	5 Examples
	6 Testing impact
	7 Conclusion and outlook
	8 Literaturverzeichnis

