
Scenario-based validation of self-learning systems using metamorphic
relations

Marco Stang, Martin Sommer and Eric Sax

{marco.stang, ma.sommer, eric.sax}@kit.edu

Abstract: Numerous applications in our everyday life use artificial intelli-
gence (AI) methods for speech and image recognition, as well as the recog-
nition of human behavior. Especially the latter application represents an
interesting research field for self-learning systems based on AI methods in
the automotive domain. Human driving behavior is determined by routines
that an AI system can learn, thereby predicting future actions. However, the
methods and tools for validating these systems are insufficient and need to be
adapted to the new types of self-learning algorithms. In this paper, we present
a concept for validating self-learning systems based on behavioral scenarios,
which was extended by metamorphic relations. The concept integrates use
case testing, state transition, interface and requirement testing with metamor-
phic relations to create initial and subsequent test cases. A proof of concept
is performed using the example of a self-learning comfort function in a vehi-
cle. The correct functionality is shown by comparing the generated test cases.
The concept addresses the main challenges in testing self-learning systems,
in particular the generation of test inputs and the creation of a test oracle.

1 Introduction and Motivation

With the growing use of self-learning system (SLS) in different applications in our daily
lives [SSM+22], we are increasingly confronted with the decisions made by the systems
and the resulting consequences that can have far-reaching impact on us [J.M20]. There-
fore, the explainability through testing is of high significance to generate trust with the
customer. Traditional testing methods do not apply for SLS as they follow data-driven
programming paradigms where the decision logic is not implemented in program code
but extracted from datasets. This means that code can be tested extensively, and the SLS
still makes decisions that are not comprehensible because the input datasets for training
the SLS have not been considered in the testing process. This fundamentally different na-
ture and construction of SLS compared to traditional, deterministic and less statistically
orientated software systems poses new challenges in the field of software testing which
we are trying to tackle with the combination of metamorphic and scenario based testing.

2 State of the Art

2.1 Scenario-Based Testing

Scenario-based testing has become a central method in testing automotive systems. Thereby,
scenarios are defined as the temporal development of scene elements. Within a scenario,
the scenes consist of a pre-defined sequence that begins with a start scene. The different
actions of road users represent the link between the scenes. Defined scenarios form the
basis for generating relevant test cases for the System under Test (SUT) [Sur18]. In the
research work in the PEGASUS project, the concept of scenarios was further detailed and
concretized [PEG18]. A concept was developed that makes scenarios representable on
three levels of abstraction. A distinction is made between functional, logical and concrete
scenarios [ea17].While functional scenarios represent a level at which relevant properties
are recorded and described in language, logical scenarios define parameter areas in the
state space for these properties in the form of entities and relationships of the scenario.
Concrete scenarios are ultimately actual manifestations of a logical scenario, i.e., they
represent a fixed, selected set of parameters. A logical scenario can therefore be trans-
formed into at least one concrete scenario [ea17]. Generating test cases is the main part of
the scenario-based testing concept. Test cases are used to check concrete properties of the
SUT against boundary conditions, such as input data, expected reactions or test instruc-
tions, which are checked before, during or after the test execution [Pfe20]. In the context
of scenario-based testing, a test case can be understood as the concretization of a scenario,
which contains evaluation criteria as further components that decide under which condi-
tions a test case was passed [Sch17]. Furthermore, a test case includes the description of
the requirements for the test execution, such as the requirement for accuracy or the time
required to execute the test cases.

2.2 Metamorphic Testing

Figure 1: Principle of metamorphic testing [Z.H13]

The test procedure of metamorphic testing (MT) was first introduced in the work of Chen

et al. in 1998 with the aim of reusing successful test cases through transformation [T.Y98].
Figure 1 shows the principle of metamorphic testing with an Input-Dataset X (Original
test case in Figure 1), which consists of the data points t of class I. This dataset is then split
in a certain ratio into a training dataset D and a testing dataset K. Both datasets are used
to train and test the model M in the SUT. The corresponding output of the ML system
is called f(X). In the next step, a transformation is to be applied to this source input.
This transformation is determined with the help of the so-called metamorphic relations
(MR) and is expressed in the form of a transformation function T. Then, depending on the
desired metamorphic relations, the transformation is applied only to the training dataset
D or additionally to the test dataset K as well. Thus, the transformed datasets T(D) and
T(K) result. Together, these form the new input dataset X’, also known as follow-up input
(cf. follow-up test case in Figure 1), for the new model M’. Accordingly, the result of the
follow-up output is denoted as f(X’). The metamorphic relations describe expectations
regarding the output relation between the source output and the follow-up output, more
precisely the input relation between the source input and the follow-up input with respect
to the applied transformation (cf. figure 1). These expectations, which also serve as a kind
of pseudo-oracle [J.M20], must be met in order for the metamorphic test to be successful.
For example, one expectation may be that the follow-up output after the transformation
should not differ from the source output.

3 Concept

The concept aims to solve the challenges in testing self-learning systems with focus on
user-specific behavior. In the following, the test process is presented and tested using the
example of a commuter using a self-learning automotive seat massage function.

3.1 Scenario Generation

In the early phases of the software development process, real data is rarely available in
sufficient quantity and quality. Prototypes for data acquisition or structures, such as au-
tomated data pipelines, do not yet exist or are under development. Since it is not goal-
oriented to wait for a sufficient database during development, it is common practice to use
data generation methods to accelerate the development of self-learning systems [SLP11].
However, the blind generation of large amounts of data is not sufficient to test self-learning
software, as it might lead to the generation of scenarios not meaningful for verifying the
functionality. Therefore, the requirements analysis for the generation of relevant scenar-
ios became the first step of our flowchart illustrating the scenario-based validation of a
self-learning system using metamorphic relations (Figure 2). This step summarizes the
definition of logical and functional scenarios. For example, a logical scenario can be a
typical commuter who drives from home to his workplace every morning. The following
step defines the features to be generated synthetically and the APIs to be used for this sce-
nario. For the challenge of data generation, a concept named CAGEN has been developed
in a previous work by the authors [SMS21]. CAGEN is an acronym for Context Action

CAGEN

Start

Scenario
Requirement

Analysis

Context Generation
with Providers

Action Generation
by Context with

User Logic

Select
Testing Strategy

Index=1 No No

State transition-
based scenario

Interface Based
Scenario

Requirement Based
Scenario

Input
Relation

Index=4

Stop

Index+1

Index=2 Index=3 Index=4No

YesYesYes

Input
Source

Test Case

Input
Follow-up
Test Case

Yes

Concrete
CAGEN

Scenario

Logical and
Funtional Scenario

Definition

Concrete
CAGEN

Scenario

Modified Concrete CAGEN Scenario

Output
Source

Test

Output
Follow-up

Test

Cluster
Visualisation

Use case-based
scenario

Yes

Output
Relation

System under Test

Self-Learning
Function

System under Test

Self-Learning
Function

Metamorphic
Relation

EvaluationTraining

Metamorphic Testing

Scenario-Based Analysis

Scenario Generation

Figure 2: Overall Flowchart of the scenario-based validation of a self-learning systems
using metamorphic relations

GENeration. Context-based data refers to any information about the environment, for ex-
ample GPS-coordinates, weather or time. Action generation designates user-specific (i.e.
commuter) and context-based (i.e. weather) interactions with the system. For the context
generation, so-called providers are used. A provider can provide data through Web APIs
or recorded datasets. The providers have the ability to build on one another, i.e., Provider
B gets input from Provider A. To give an example, the tunnel provider simulates the loss
of the GPS signal while driving through a tunnel and the recovery of the signal at the
tunnel exit. The tunnel provider therefore needs information about the position of the
simulated vehicle, which is supplied by the position provider. The position provider is not
dependent on any other provider, but provides the longitude and latitude of the vehicle
through an external API (OpenRouteService1). Based on this context data, user-specific

1https://openrouteservice.org/

actions are generated. The most straightforward approach uses random actions at random
positions on the route. This way, it is possible to create multiple actions with a low time
effort, but without the possibility to influence the events. The second approach is the
generation of actions by predefined rules. An event is created if a certain rule is met or
not (e.g., if temperature is higher than 30 °C, the massage will be activated). With this
approach, actions can be tailored to a specific type of user. The most time-consuming
type of event creation is the complete manual generation of actions. In this case, a human
operator takes into account the given context and creates realistic actions according to the
expectations.

3.2 Scenario-Based Analysis

Once the concrete CAGEN scenarios have been created, the following four test strategies
are presented with the goal of modifying the dataset. The modifications affect the context,
but also the user-specific actions (user logic).

1. Use case-based scenario: The use case describes the behavior of the system (test
object) from an external perspective, e.g., the user perspective. Such a test technique
covers more than one feature of the test object, allowing the interaction with this
characteristic to be tested. The technique describes the behavior of the system in
situations of user interaction. The different cases include:

• Regular Cases - the behavior as intended

• Special Cases - alternative or optional behavior. For example, if a child seat is
placed on the car seat

• Error Cases - the behavior when errors occur. For example, if the user activates
massage level 1 and the system activates massage level 5

• Misuse Cases - the user operates the system in a way it was not designed
for. For example, turning the massage on and off multiple times within a few
minutes.

2. State transition-based scenario: Technical systems assume certain states, e.g.,
on, off, startup, shutdown, normal operation, etc. The behavior of a system usually
differs between several states. Therefore, it is necessary to test the system in all
possible states. The transition between states is also of interest, as there are several
ways to achieve or change it. The goal is to check whether states and transitions are
implemented logically or not. Considering the window as a test object, the event
would be the opening and closing of the window. The interface can be considered
as a door system that reports the state of the driver’s door (open/closed).

3. Interface Based Scenario: Interface Based Testing focuses on the test object’s
input and output interfaces. The test bases include interface requirements, CAN
catalog, diagnostic database, etc. Interface, in particular, refers to the dependencies
in features: context or events, pair-wise, three-wise combinations, etc. For example,
the window lifter interface, defined by a CAN communication matrix for an ECU,

consists of eight boolean inputs/parameters. A single window was considered, but
the CAN interface compels to test all four windows and its eight value-derived test
cases.

4. Requirement Based Scenario: The approach is to analyze requirements (n) and
develop one or more test cases (m) to check the fulfillment of the requirement by the
test object using n to m mapping. Requirements can generally be found in several
artifacts, e.g., specifications of design, models, and standards. It can be derived
intuitively from the most straightforward scenarios, starting from an assumption
about what a person would do at a particular location. Considering data as a sea
of input, the events can be regarded as a class, and at least one test case should
be picked to conform to the behavior while evaluating the same. This technique is
called Equivalence class partitioning.

After one of the test strategies described above has been executed, a modified concrete
CAGEN scenario is available (Table 1). This dataset will be referred to as the input follow-
up test case in the following phase. The concrete CAGEN scenario from the “Scenario
Generation” section is used as the input source test case.

Latitude Longitude Time Temperature Passenger
Count

Massage
Level

48.710226 8.99562 28.04.2022
06:34:13

5.1 1 0

48.710147 8.99551 28.04.2022
06:36:13

5.6 1 3

48.710031 8.99543 28.04.2022
06:38:16

5.9 1 3

Table 1: Exemplary modified concrete dataset based on CAGEN and User-Logic. Lati-
tude, Longitude, Time, Temperature, and Passenger Count represents context data. Mas-
sage level is an example of a user event.

There are various MRs which include different transformations, for example, addition or
subtraction of the data points, adding data points to the training set or removing one of
the action labels etc. The proof of the correctness of the system under test is provided by
verifying the validity of MRs. As an example of an Input Relation, the change of time
context can be considered. The Modified Concrete Scenario consists of generated context
data and the behavior of a commuter (Input Source Test Case). Using scenario-based
analysis (i.e., use cases), the MR was defined as the commuter behaving the same way on
different workdays.

3.3 Training and Evaluation

Once the metamorphic testing phase is complete, the self-learning system (in this context
the SUT) is trained with both test input datasets (source and follow-up test case). The
output of the SUT contains two datasets, grouping data points into classes based on the
provided dataset. The test outputs form an output relation to each other.

Figure 3: PCA of the Output Source Test (left, Monday) and the Output Follow Up Test
(right, Wednesday) for a massage function. The values following the massage stand for
the different intensities of the massage

The applied transformation (see section 2.2) that leads to the visualization of Figure 3
is the change of the time context between source and follow-up test case by two days.
This behavior can be defined for example via the test strategy “Use case-based Scenario”
from Phase Scenario Based Analysis and states that the behavior of the simulated driver
is identical on both days, namely the source test case on a Monday and the shifted follow-
up on a Wednesday. For the visualization, a Principal component analysis (PCA) was
chosen that is capable of showing the predicted data clusters even for higher dimensional
datasets. Since the set of contexts contains five features (see Table 1), the visualization
of the data in the form of two-dimensional diagrams is not possible. Accordingly, PCA
maps the data into a less dimensional coordinate system that attempts to consider as much
information as possible. It can be observed in Figure 3 that the clusters, i.e. the behavior
of the self-learning system, are almost identical for the source and the follow-up test case,
from which it can be deduced that the metamorphic relation is fulfilled.

4 Conclusion and Summary

A workflow called ‘Scenario-based metamorphic testing’ using scenario-based and meta-
morphic testing has been presented. The concept focuses on overcoming the two major
challenges in testing self-learning systems, namely the generation of test inputs and the
test oracle problem. The test input generation was investigated by the scenario-based
generation of data sets by CAGEN. The advantage of combining these two techniques is
the use of defined tests through scenarios and the flexibility of metamorphic tests which
do not require any labels. The evaluation based on the visualization of the source and
follow-up datasets allows considering whether a metamorphic relation has been revealed
or broken.

5 Acknowledgements

We would like to thank the student assistant Neeti Kumari for her work and commitment
to this project.

References

[ea17] Menzel et al. Szenarien für entwicklung, absicherung und test von automa-
tisierten fahrzeugen. In 11. Workshop Fahrerassistenzsysteme. Hrsg. von Uni-
DAS e. V, pages 125–135, 2017.

[J.M20] J.M. Zhang, M. Harman, L. Ma, Y. Liu. Machine learning testing: Survey,
landscapes and horizons. In IEEE Trans. Softw. Eng., 2020.

[PEG18] PEGASUS. https://www.pegasusprojekt.de/files/tmpl/PDF-Symposium/04
Scenario-Description.pdf, 2018. Accessed: 2022-09-02.

[Pfe20] Raphael Pfeffer. Szenariobasierte simulationsgestützte funktionale Ab-
sicherung hochautomatisierter Fahrfunktionen durch Nutzung von Realdaten.
PhD thesis, Karlsruher Institut für Technologie (KIT), 2020.

[Sch17] Fabian Schuldt. Ein Beitrag für den methodischen Test von automatisierten
Fahrfunktionen mit Hilfe von virtuellen Umgebungen. PhD thesis, Technische
Universität Braunschweig, Apr 2017.

[SLP11] Kaarthik Sivashanmugam, Da Lin, and Senthil Palanisamy. Scenario Driven
Testing. In 2011 Eighth International Conference on Information Technology:
New Generations, pages 299–303, 2011.

[SMS21] Marco Stang, Maria Guinea Marquez, and Eric Sax. CAGEN - Context-
Action Generation for Testing Self-learning Functions. pages 12–19, Cham,
2021. Springer International Publishing.

[SSM+22] Marco Stang, Simon Stock, Simon Müller, Eric Sax, and Wilhelm Stork. De-
velopment of a self-learning automotive comfort function: an adaptive ges-
ture control with few-shot-learning. In 2022 International Conference on
Connected Vehicle and Expo (ICCVE), pages 1–8, 2022.

[Sur18] Sebastian et al. Surmund. Neue Szenarien für autonome Fahrsysteme. ATZex-
tra, 23(2):42–45, 2018.

[T.Y98] T.Y. Chen, S.C. Cheung, S. Yiu. Metamorphic testing: a new approach for
generating next test cases. In Tech. Rep. HKUST-CS98-01, Dept. of Computer
Science, Hong Kong University of Science and Technology, 1998.

[Z.H13] Z.Hui, S.Huang, Z.Ren, Y.Yao. Metamorphic testing integer overflow faults
of mission critical program: A case study. In Mathematical Problems in En-
gineering, 2013.

