A testing framework for DNN-based radar applications

Mojdeh Golagha

mojdeh.golagha@infineon.com

Abstract: Nowadays, radar systems play a vital role in assisted driving for
adaptive cruise control and obstacle avoidance. Practitioners apply neural net-
work architectures to radar data for object detection and classification. Deep
neural networks (DNN) can automatically extract the features from the radar
range-doppler signatures such that they generally achieve high classification
accuracy. However, one concern that is often cited when designing DNN-
based radar applications is their resilience against noise, perturbation, dis-
tribution shift, and adversarial attacks. So, there is a need to investigate their
trustworthiness before using them in the real world in safety-critical domains.
In this paper, we offer a fuzz test generation framework to evaluate the perfor-
mance of DNNs. Our framework automatically generates test cases valuable
for improving model robustness by recognizing more diverse error-triggering
inputs. Fuzzing systems work based on mutating input data while preserving
the semantic labels.

Radar is an electromagnetic system that uses radio waves to detect and localize target
objects which reflect a signal. The time taken by the signals to return from the obstacles
to the device is used to determine the angle, range, and velocity of the objects. Radars are
being extensively used to make smart homes, factories, healthcare, aerospace, defense,
and so on.

Radar plays a crucial role in automated driving today. In order to become a leader in
autonomous vehicle manufacturing, all automobile manufacturers have entered the field,
and they are competing to develop the most advanced autonomous vehicles. In order to
achieve this goal, automobile companies focus their research and development efforts on
sensor technologies as autonomous vehicles rely heavily on sensors for navigation. For a
seamless ride, most autonomous vehicles use a combination of cameras, lidar, and radar
for imaging, detection, ranging, tracking, and sensing location. Advanced driving assi-
stance systems (ADAS) in autonomous vehicles utilize sensors to provide more precision
and power.

Compared to other types of sensors used in autonomous vehicles, radar is particularly
reliable in low visibility conditions, such as cloudy weather, snow, rain, and fog. Autono-
mous vehicles use radar that operates in the frequencies of 24, 74, 77, and 79 GHz. These
frequencies correspond to short-range radars (SRR), which are used for blind-spot mo-
nitoring, lane-keeping assistance, and parking assistance; medium-range radars (MRR)
that are used for obstacle detection in the range of 100-150 meters; and long-range radars
(LRR) that are used for automatic distance controlling and brake assistance. Typical au-
tomotive radar applications include adaptive cruise control (ACC), blind-spot detection
(BSD), line change assistant, and so on.



Al algorithms can be used to interpret radar measurements in an advanced way. Neural
networks are used to automatically classify radar targets, which allows for a deeper un-
derstanding of radar signals and images. For instance, in [PHV™ 18], Prophet et al. have
developed a classification system for pedestrians using a 79 GHz automotive radar sen-
sor. The ability to classify objects is used to distinguish vulnerable road users from other
objects, such as vehicles. They use a 79 GHz chirp sequence to create a range-Doppler-
Matrix. This matrix indicates the location and velocity of all the targets in the area.

In another application [MGZV 18], Martinez Garcia et al. propose a convolutional neural
network (CNN) for classifying radar images in order to detect vacant parking spaces with
a 77-GHz imaging radar.

The emerging use of Al-based radar applications increases the need for systematic tes-
ting and thorough evaluation of such safety-critical systems as other technical systems.
Any risks have to be addressed by employing suitable measures. The same hidden faults
that cause incorrect behavior in traditional software could also cause major accidents and
losses in Al applications.

In this paper, we prose a framework for detecting potential defects of deep neural net-
works (DNN) designed for radar applications. Our framework is designed based on the
metamorphic testing strategy [CCY?20] and is guided through some coverage criteria. Uti-
lizing this framework, users can detect corner cases and generate tests automatically.

1 Challenges of testing DNN-based applications

DNNs have made remarkable progress in image and speech recognition in the past few
years. Self-driving cars are increasingly using these technologies to do advanced autono-
mous tasks. To ensure the safety and security of such systems, practitioners need to test
and evaluate them using realistic scenarios. The standard way of measuring the perfor-
mance of such algorithms is calculating metrics such as accuracy, F-score, an AUC [MSTS19].
However, these metrics can be insufficient because they are calculated on mostly hand-
picked and randomly chosen test datasets. The test dataset might not be a good represen-
tative of the real-world data or the training data distribution [MSTS19].

The quality of the test dataset is an important factor in the trustworthiness of accuracy
results. If the test dataset does not cover the distribution of training data or is not diver-
se enough to cover real-world scenarios, the accuracy results cannot be trusted. In addition
test dataset must be a combination of hard and easy samples to ensure robustness| WXK*21].
Therefore, there is a need for a systematic way of test generation to find corner cases and
explore untested areas [MSTS19]. To this end, we propose a coverage-guided fuzz test
generation technique.

2 Test generation framework

Figure 1 indicates the main components of our testing framework. The framework is based
on DeepHunter [XMJX™19], but has been modified to adapt radar data type and applicati-
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Abbildung 1: Test Generation Framework

ons. The overall structure of the fuzzing procedure is the following: the fuzzer starts with
an initial seed queue containing at least one set of valid inputs for the DNN under test.
Given this seed queue, until instructed to stop, the fuzzer selects seeds from the queue.
Given the seed as input, the mutator component performs semantic preserving transfor-
mations to that input. Finally, the mutated inputs are fed to the DNN. While executing,
the coverage at different levels of granularity is extracted. Failing tests are added to the
failing tests pool and are added to the queue again for further mutations. Passing tests
that exercise new coverage are also added to the queue again. But, passing tests without
coverage increase would be discarded to avoid wasting more time on them. This process
continues until some ending criteria are satisfied. The ending criteria are defined by the
user.

In the following, we describe different components in more detail.

2.1 Seed selection:

To start fuzzing, we need initial seeds on which DNN has high performance. However,
initial seeds can be selected in two ways: a) data points classified correctly with a confi-
dence score higher than a threshold, or b) the entire test dataset. The next step is making
a queue of these initial seeds. The fuzzer selects seeds from this queue to mutate.

2.2 Seed mutation:

The selected seeds from the queue are sequentially mutated using defined mutation cri-
teria. Depending on the data type, different transformers should be defined. Examples of
image transformers include blur, shear, rotate, auto-contrast, noise, and so on. There are
more advanced transformers such as Augmix [HMC™19] and Augmax [WXK"21].

We restrict the mutant data to have Structural Similarity Index Measure [BBS22]

(SSIM) > 0.5



to preserve the semantics of the image. SSIM 1is used since it is a perceptual metric that
reflects the image quality degradation of similar-looking images.

2.3 Coverage criteria:

After mutating seeds, they are fed to the DNN for prediction. Meanwhile, the covera-
ge is computed. Coverage criteria used in our framework are based on [YPW21] and
[XMJX*19].

Neuron Coverage (NC): NC can be compared with the code coverage in traditional
software testing. NC is the ratio of activated neurons in the DNN for corresponding
test input. Here, we need to define a threshold value. So, the neuron is considered
to be activated when the output value for that neuron is above the threshold. The
default value is 0.75.

* K-Multi Section Neuron coverage (k-MNC): The neuron’s training range is di-
vided into k sections. A value section is considered to be covered when the output
value of the neuron falls into this region using the test input. K-MNC is a measure
of covered sections of all trainable neurons of DNN. A diverse set of inputs are
required to maximize the k-MNC coverage criteria. The default value for k is 1000.

* Neuron Boundary Coverage (NBC): NBC is a ratio of corner-case regions cover-
ed by given input. It is calculated by using both upper and lower boundary values.
The default value is 10.

* NeuraL Coverage (NLC): As opposed to treating each neuron as a separate com-
putational unit, NLC considers each DNN layer to be the basic computational unit
and captures four important features of neuron output distributions, namely diver-
gence, correlation, shape, and density.

2.4 Output

The outputs of the fuzzer are — a) coverage information, b) identified corner cases and a
new c) test dataset. The coverage information could help us to evaluate the performance
of the trained DNN under various coverage mutation criteria. The identified corner cases
are hints to detect potential defects of a trained DNN. By analyzing the crash data, we
can identify useful transformations for which DNN might have biased performance. This
information could be very useful to re-iterate the training pipeline.

3 Radar specific settings

As mentioned before, radars allow us to estimate the range, velocity, and angles of targets.
It is typically necessary to use a preprocessing chain to extract some of these parameters



from the sampled intermediate frequency signal, before feeding it into the neural net-
work, in order to improve interpretability. Different such preprocessing chains are given
in [SH20]. The input to the neural networks are Range-Doppler Images (RDI) of each
radar’s antenna [ZLW?20] for object detection, or directly the time domain data [SSF20],
which are then used implicitly to generate RDIs in the first network layer.

Since RDI images are different from usual images, the introduced transformation for
images should not be applied to them. The mutation techniques should be meaningful for
this type of data. Therefore, in our mutation component, we implemented data augmenta-
tion techniques such as time shift, frequency disturbance, and frequency shift introduced
in [SLY21], [SWW20] as well as transformations using generative adversarial networks
[AI19].

4 Conclusion

In this paper, we presented a testing framework for evaluating and improving the quality
of Al-based radar applications. Our proposed framework is based on the metamorphic
testing strategy. Different components of the framework have been customized to adapt
radar-specific data types. Different radar data transformations have been identified and
used for generating new tests. Identified corner cases and failing tests can be used to
retrain the DNN. This leads to an improvement in the robustness of the algorithm.
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