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Abstract: The transition to battery electric vehicles requires electrification 
of power systems. The reliability and efficiency of electrical conversion 
systems are often compromised due to inadequate thermal management 
systems, leading to electronic failures and performance degradation. 
Addressing this challenge necessitates the optimization of thermal systems 
and the development of innovative vehicle architectures. The proposed 
study utilizes a novel design framework for topology and sizing 
optimization of electric vehicle energy systems using a graph-based 
modeling approach. To address the increasing complexity of electric vehicle 
systems, the model incorporates multi-physics modeling, integrating the 
interaction between the thermal, electrical, and mechanical domains. 
Additionally, the framework uses energy conservation laws to capture 
physical system dynamics, making optimization more structured and 
helping analyze design trade-offs effectively. To demonstrate its 
effectiveness, an electric bus powertrain design is investigated as a case 
study, with the goal of optimizing thermal and electrical component sizes 
and energy flow, as well as discrete choices in the topology of the system. 
The electric bus model incorporates experimentally validated empirical data 
obtained through advanced measurement techniques, ensuring credible 
optimization and realistic system behavior. This case study demonstrates 
how design optimization can influence the efficiency of thermal 
management systems. 

1 Introduction 

The rapid growth of electric mobility is creating new challenges for vehicle design. 
Engineers now face increasingly complex systems in which electrical, thermal, and 
mechanical domains strongly interact. To address this complexity, advanced 
frameworks are required that support system-level optimization. Several approaches 
have been developed for modeling the dynamics of such physical systems, including 
state-space models [1], partial differential equations [2, 3], bond graphs [4], and block 
diagram modeling techniques [5]. 
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These methods differ in their modularity, computational complexity, and ability to 
capture interactions between subsystems. A major difficulty in applying physics-
based models to optimization lies in integration: because models from different 
disciplines often exchange information through incompatible signals, communication 
and simultaneous simulation across domains can become challenging [6]. 

To overcome these limitations, this paper applies a conservation-based optimization 
framework for dynamic systems of systems. The proposed approach builds on the 
graph-based modelling methodology developed by [7], which can be adapted to the 
generic formulation introduced by [8]. This procedure is further augmented by [9] to 
enable design optimization frameworks for systems governed by conservation laws. 
The modeling techniques are physics-based, modular, and designed to capture 
interactions across multiple domains [10]. 

The applicability of the graph-based methodology has already been demonstrated in 
several studies. For example, [8] shows its effectiveness in modeling a hybrid electric 
UAV powertrain and designing predictive control strategies, while other works 
validate its ability to capture the dynamics of thermal–fluid systems against 
experimental data [7]. Building on this foundation, another work of [9] applies the 
augmented graph-based framework to the optimization of battery-electric vehicles, 
investigating the influence of different configurations and component dimensions on 
energy efficiency and system mass. A hybrid electro-thermal energy storage system 
is also introduced as a representative design example, highlighting the benefits of 
employing the framework for system-level optimization of both plant and controller 
[11]. 

While system-level optimization of battery-electric vehicles has received attention in 
the literature, notably absent are results derived from real world data validating the 
capabilities of this framework as well as the realization of the impact of optimization 
frameworks on thermal management systems.To address this gap, the framework is 
instantiated here on a Battery Electric Vehicle (BEV) bus powertrain under realistic 
operating conditions. Here, electrical and thermal components are jointly optimized.  

This leads to the following key contributions of the paper:  Formulation of a general 
graph-based framework for multi-domain, multi-objective optimization, enabling 
consistent representation and integration of several subsystems based on fundamental 
works of Alleyne e.g. [7-14]  Demonstration on a realistic BEV bus architecture, 
including strong electrical–thermal couplings, to illustrate the framework’s workflow 
and applicability to real-world design problems Numerical case studies showcasing 
the potential of the proposed approach to improve thermal management systems, 
highlighting its capacity to handle coupled domains and system-level objectives. 

2 Graph-Based Modeling Basics 

This section introduces graph-based modeling [12, 13, 14]  and outlines design 
optimization for these models [9]. 
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2.1 Graph-Based Modeling 

The graph-based models are derived by applying conservation equations to a 
component or system, inherently capturing the storage and transport of energy [15]. 
In such a representation, energy storing capacitive elements are modeled as vertices, 
while the paths for energy transport between storage elements (the vertices) are 
modeled as edges. An important feature that enhances the suitability of graph-based 
models is their capacity to incorporate orientation, which permits bidirectional power 
exchange between vertices. For example, in battery electric vehicle energy transfer 
occurs in both directions from the battery to drive the vehicle and back to the battery 
during braking (brake energy recuperation), which can be modelled by bidirectional 
graphs. The orientation of an edge defines only the reference direction for positive 
power flow. Each edge 𝑒௝ is associated with a bidirectional power transfer 𝑝௝, which 
may depend nonlinearly on the states of the adjacent vertices and, if applicable, on an 
actuator input. 
 𝑝௝ = 𝑓௝൫𝑥௝

tail,  𝑥௝
head,  𝑢௝൯. (1) 

Here, x௝
tailand 𝑥௝

head denote the states of the tail and head vertices of edge 𝑗. Applying 
conservation of energy to a state 𝑥௜ at vertex 𝑣௜   gives the following dynamic equation: 

 𝐶௜𝑥ప̇ = 𝑝௜
in − 𝑝௜

out, (2) 

where 𝐶௜ ≥ 0 is the vertex capacitance, and 𝑝௜
in and  𝑝௜

out are the total incoming and 
outgoing power flows at vertex 𝑖. Appling the previous equation for all states, the 
full system dynamics can be rewritten as  
 
 𝑪𝒙̇ = −𝑴ഥ 𝒑 + 𝑫ഥ𝒑ୱ, (3) 

where 𝒙 ist the state vector, 𝑴ഥ  maps the edges to the vertices, 𝑫ഥ  describes the 
relationship between the sources and the vertices and 𝒑௦ is a vector of external power 
flow and 𝑪 is a matrix of vertex capacitances [7]. The states and the capacitances used 
for the case study are discussed in detail in Section 3. 
However the graph based model described by Eq.(3) is not suitable for design 
optimization as it is. The next section is limited to the latter.  

2.2 Design Optimization 

To perform an optimization framework, the system must be expressed in terms of 
design variables, which serve as the fundamental degrees of freedom guiding the 
search for improved performance. Within a graph-based modeling approach, the 
influence of design variables manifests in two principal forms: modifications of 
component size and modifications of system topology. From a graph-theoretic 
perspective, the size of a component is encoded in the capacitance matrix, which 
governs the system’s dynamic behaviour. Scaling the size of a vertex not only affects 
the vertex itself but also the connected edges, the resulting power flow, and ultimately 
the source contributions.  
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For example, increasing the battery capacity 𝑄 modifies its internal resistance 𝑅, 
which in turn changes the dissipated heat according to 𝑅𝐼ଶ. This illustrates the 
principle of sizing optimization, where adjustments in design variables propagate 
through both local interactions and the global system response. In contrast, topology 
optimization focuses on exploring alternative system configurations through the 
addition or removal of edges. Such modifications affect the same three aspects as in 
sizing optimization—vertex properties, edge weights, and source-edge 
contributions—and therefore must be analyzed with equal care to preserve system 
consistency and physical feasibility.  

The formal relationship between design variables and system dynamics is captured in 
the augmented graph-based model [9]. Its matrix form is expressed in Eq.(4): 

 𝜳𝒄𝜱𝒄𝑪𝒙̇ = −𝑴ഥ 𝜳𝜱𝒑 + 𝑫𝜳𝒔𝜱𝒔𝒑𝒔. (4) 

The six design matrices 𝜳c, 𝜱𝒄, 𝜳, 𝜱, 𝜳sand 𝜱s map the effects of component 
scaling and alternative architectures into the mathematical representation of the 
model. Specifically, 𝜳c and 𝜱𝒄 capture the influence of sizing and topology decisions 
on vertex properties. The matrices 𝜳 and 𝜱 represent the corresponding effects on 
edge scaling and removal, while 𝜳s and 𝜱s account for these effects on the source 
edges of the graph-based model. These design matrices are diagonal and contain 
design functions that depend on the design variables. For further details cf. [9]. 

2.4 Formulating the Optimization Problem 

The core of this framework lies in formulating and solving the optimization problem, 
which can be expressed as follow 
 min

𝜽
   Jtotal(𝜽𝐜, 𝜽𝐳) 

subj. to :     𝜽  ≤  𝜽 ≤  𝜽ഥ, 

 𝑔(𝜽)  ≤  𝟎 

 

(5) 

Here,  Jtotal(𝜽𝐜, 𝜽𝐳) denotes the objective function, which may serve various 
optimization purposes, such as minimizing mass, reducing energy losses, or 
enhancing overall performance. The design vector 𝜽 comprises the sizing and 
topology-related design variables, 𝜽𝐜 and 𝜽𝐳, respectively and is defined as  

 
𝜽 =  ൬

𝜽𝐜

𝜽𝐳 
൰. 

(6) 

This vector is defined within specified bounds, such that each variable must remain 
between a given lower limit 𝜽 and upper limit 𝜽ഥ. The previously discussed augmented 
modelling approach is employed within the optimization problem, where the graph-
based model is simulated for a given set of design variables and the objective function 
is evaluated from the resulting trajectories. 
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Eq. (5) presents also the set of nonlinear constraints with nonlinear function 𝑔 for 
the design problem. 
In the following section, this proposed optimization procedure is demonstrated 
through its application to a real-world battery electric bus.  

3 Design of an Electric Vehicle Powertrain  

This section applies the design optimization framework to a case study of a bus 
powertrain configuration, considering electrical, mechanical, and thermal power 
flows, with data experimentally validated in [16]. The baseline configuration, 
including sizing and architecture options, is outlined and represented as a graph based 
model. These configuration options are then formulated as an optimization problem 
within the framework, where different single- and multi-objective functions are 
defined. The results highlight the capability of the framework to identify designs that 
meet different requirements. 

3.1 Configuration of the Bus Electric Powertrain 

Fig 1 presents the baseline EV powertrain configuration, and Figs. 2–4 show the 
graphical models of the three parts of the powertrain.  

 

Figure 1: Electric vehicle baseline powertrain configuration. 

The powertrain consists of a battery system as the main power source, connected in 
parallel to a high-voltage direct current (DC) bus. This bus distributes power to three 
subsystems: (i) the Drive Inverter System (DIS), which drives an AC motor 
responsible for vehicle propulsion; (ii) an inverter that supplies the HVAC system 
(heating, ventilation, and air conditioning); (iii) an Electronic Accessory Control Unit 
(EACU) and (iiii) an electric battery thermal management module (eBTM) to fulfil 
the conditional needs of the battery. Note that eBTM is not modeled in this case study. 
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In addition, the high-voltage bus is connected through a switch to a dissipative resistor 
that prevents overvoltage events.   

 

 

Figure 2: Graph-based model of high voltage bus (battery, motor and vehicle body). 

 

Figure 3: Graph-based model of the low voltage bus 

The EACU, implemented as a bidirectional DC/DC converter, steps the voltage down 
to supply a low-voltage DC bus. This low-voltage bus both charges a 24 V auxiliary 
battery and powers additional electrical loads. The auxiliary battery in turn drives the 
cooling pump, which circulates coolant through the liquid cooling loop of the drive 
system, and the fan, which extracts heat from the coolant via a heat exchanger to the 
ambient environment. 
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Figure 4: Graph-based of the Cooling System 

Inputs to the system include the duty cycles of the three inverters/converters. The duty 
cycles of the DIS and the HVAC inverter are held constant to satisfy the required 
vehicle speed and the HVAC load demand, respectively. By contrast, the duty cycle 
of the EACU is controlled to ensure the auxiliary battery is charged with exactly the 
power required by the pump and the radiator. 

In this study, the pump and radiator rotational speeds, as well as the vehicle velocity, 
are kept constant. This assumption allows the investigation of a single operating point. 
Switch input commands include (i) the buck/boost directionality for each of the three 
converters and (ii) the connection command for the dissipative resistor. For the 
considered case study, all converters are fixed in buck mode. Disturbances (sink 
states) include ambient air temperature, the current demand by the HVAC system, and 
the vehicle’s velocity demand profile.  

For clarity, the definitions of the state vector 𝑝 and the connection matrix 𝐶 (in  
Eq. (4)) varies depending on its type as specified in Table 1.  

 

Table 1: Vertex types and capacitances. 

Description State Capacitance 

Voltage 𝑉 𝐶v𝑉 

Battery state of charge 𝑞 𝑄𝑉ocv(𝑞) 

Current 𝐼 𝐿𝐼 

Temperature 𝑇 𝐶T 

Translating Mass 𝑣 𝑚𝑣 
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The elements capacitance’s are electrical capacitance 𝐶T, inductance L, mass 𝑚, 
battery capacitance 𝑄𝑉ocv and thermal capacitance 𝐶v. Note that, 𝑄 represents the 
battery capacity and 𝑉ocv is the open circuit voltage of the battery. This graph contains 
vertices corresponding to battery state of charge (SOC), current, voltage, temperature 
and velocity. In Figures (2), (3) and (4), the voltage, temperature, and velocity states 
are indicated by green, yellow, and orange vertices, respectively. 

The state battery state of charge (SOC) are given by the vertices 𝑣ଵ and 𝑣ଶସ in the 
Figures. (2) and (3), respectively. There are six types of edges in this graph 
representing different mechanisms of power transfer: electrical power, controlled 
electrical power, resistive losses, advection, conduction, and convection. Power flows 
of the same type follow similar governing equations, as specified by the corresponding 
edges in Table 2. 

This case study explores three sizing design options. The next section relates these 
design options to the graph-based model within the proposed framework. 

 

Table 2: Power flow edge equations by type.  
 

Edge Type Edge equation Corresponding edge numbers 

Electrical power 𝑃௝ = 𝑥௝
tail𝑥௝

head 1-3, 9-11, 13-16, 18, 22, 23, 30, 32, 
36, 73, 75, 78, 37-40, 46, 48, 50, 51 

Controlled electrical power  𝑃௝ = 𝑢௝𝑥௝
tail𝑥௝

head 17, 31, 47 

Resistive losses  𝑃௝ = 𝑘௝൫𝑥௝
tail൯

ଶ
 4, 5, 6, 12, 19, 24, 33, 42, 41, 43, 

49, 52, 54, 55, 

Advection  𝑃௝ = 𝑘௝𝑢௝𝑥௝
tail 58–66, 69, 70 

Conduction 𝑃௝ = 𝑘௝൫𝑇௝
tail − 𝑇௝

head൯ 7, 8, 21, 26, 35, 77  

Convection  𝑃௝ = 𝑘௝൫𝑥௝
tail − 𝑥௝

head൯ 20, 25, 34, 67, 68 

a For edge 1 and 24, 𝑥௝
tail = 𝑉୭ୡ୴൫𝑥௝

tail൯, where V୭ୡ୴ is the corresponding battery open circuit voltage. 

b. For edge 37: 𝑥௝
head = 𝑉୭ୡ୴,୪൫𝑥௝

head൯, where V୭ୡ୴,୪ is the open circuit voltage of the low voltage battery. 
b Example of controlled electrical power for edge 17: 𝑈 𝑎𝑛𝑑 𝐼 represent voltage and current at two ends of the 
edge and u represents the duty cycle oft the Driving Inverter System (DIS). 

3.2 Applying the Framework to the Battery Electric Vehicle Bus Powertrain 

The discussed design optimization framework is applied to the case study system 
and requires at first step the definition of the design variables, which are described in 
Eq. (7). The used design function is  
 𝔣൫𝜃ୡ,஢, 𝜇൯ = 1 + 4 𝜇 𝜃ୡ,஢, (7) 
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and establishes a relationship between a design variable 𝜃௖,ఙ and an output 𝔣. The first 
design option in this case study includes size of the battery (𝜃ୡ,ଵ). Sizing of the battery 
is considered analogous to adding fractions of cells in parallel 𝑛୮ୟ୰, which directly 
affects battery parameters such as capacity and mass. To reflect this, the first entry of 
𝚿௖ in Eq.(4)  is defined as: 

 𝑓ట೎,భ
൫𝜃௖,ଵ൯ = 𝑛୮ୟ୰൫𝜃௖,ଵ൯ = 𝑛୮ୟ୰,୬୭୫ 𝔣 ቀ𝜃௖,ଵ, 𝜇୬౦౗౨

ቁ. (8) 

Here, 𝜇୬౦౗౨
is set to 0.47, ensuring that the number of parallel cells 𝑛୮ୟ୰varies between 

6 and 18. The nominal number of parallel cells in the high-voltage battery, 𝑛୮ୟ୰,୬୭୫, 
is defined as 6. Important information is that the size of the series cells is kept constant 
during the optimization procedure to ensure the required voltage level for the driving 
motor. As the number of parallel cells in a battery pack increases, both the electrical 
capacity (vertices: 𝑣ଶ, 𝑣ଷ) and the thermal mass (vertices: 𝑣ସ, 𝑣ହ) scale proportionally. 
The internal resistance of the battery is also influenced by the overall pack size, which 
is modeled in edge 𝑒ସ. The design functions applied in this study are described in 
detail in [9].  

The parameters 𝜃ୡ,ଶand 𝜃ୡ,ଷ are introduced to model the scaling of the motor and pump 
sizes, respectively. An increase in these parameters corresponds to an increase in the 
motor constant, which in turn leads to higher resistance in the associated components. 
Note that the motor constant defines the torque a motor can supply per unit of current. 
Using the design function in Eq.(7) captures this effect, as illustrated in Fig. (5).  

 

Figure 5: Design functions for component parameters. (a) Pump parameters and (b) 
motor parameters (blue: motor constant, red: resistance, green: mass). 

Motor mass increases with scaling, thereby contributing to the total vehicle mass, 
which is used to compute the power flow from rolling and gradient resistances at edge 
𝑒ଶ଻. The acceleration resistance is not considered in this study, as a constant driving 
velocity is assumed. As shown in Figure (5.a), the pump mass is considered negligible 
and has no impact on the model. The primary effects occur at edges 𝑒ହହ and 𝑒ହ଻, where 
scaling the motor constant results in increased pump resistance. 
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In the next step of the framework is to define the total objective function, which is 
defined as 

Here, 𝐽ா௅,௣ = 𝑅pump 𝑓టఱర
൫𝜃௖,ଵ൯𝐼pump

ଶ , minimizes the energy losses through the pump 
where 𝑅pump 𝑎𝑛𝑑 𝐼୮୳୫୮ denotes the resistance of the pump and the current supplied 
to the pump, respectively. 𝐽୫ୟୱୱ minimizes the mass of the vehicle and is defined as 
 

              𝐽୫ୟୱୱ =
௠బା௠ౣ౥౪౥౨⋅𝔣൫ఏౙ,మ,ఓ೐మళ൯ା୬౩౛౨⋅௠ౙ౛ౢౢ⋅௡౦౗౨,౤౥ౣ.𝔣ቀఏౙ,భ,ఓ೙೛ೌೝቁ

௠౨౛౜
.                     (10) 

In this formulation,  𝑚୰ୣ୤ denotes the reference mass of the vehicle, taken as its initial 
mass. The parameters 𝑛ୱୣ୰ and 𝑛୮ୟ୰,୬୭୫ represent the number of battery cells 
connected in series and the nominal number of cells connected in parallel, 
respectively. 𝑚ୡୣ୪୪ corresponds to the mass of a single battery cell and 𝑚୫୭୲୭୰ is the 
mass of the driving motor. Eq.(9) considers also 

                   𝐽ୈ୰୧୴୧୬୥ =
ቀ𝔣(ఏౙ,భୀଵ,ఓ౤౦౗౨)ି𝔣(ఏౙ,భ,ఓ౤౦౗౨)ቁ

మ

𝔣ቀఏౙ,భୀଵ,ఓ౤౦౗౨ቁ
 ,                                               (11) 

 

which is used as a penalty term to satisfy design constraint, ensuring that the vehicles 
reach a maximum driving range. 𝐽୉୐,୫ evaluates the efficiency and effectiveness of 
the electrical motor, where optimization leads to reduced losses and better reliability. 

This function is defined as  𝐽୉୐,୫ =
൫ோౣ౥౪౥౨ 𝔣൫ఏ೎,మ,ఓ೐ఱర

൯ூౣ౥౪౥౨
మ ൯

ோౣ౥౪౥౨ூౣ౥౪౥౨
మ  . 

In this equation, 𝑅୫୭୲୭୰ represents the electrical resistance of the motor, while  𝐼୫୭୲୭୰ 
denotes the electrical current supplied to the motor. Last but not least, 𝐽୮ୣ୰୤  in Eq.(12) 
aggregates overall performance measures not explicitly included in the other terms, 
ensuring balanced system performance.  
 

                   𝐽୮ୣ୰୤ =
ቀ𝑃୫୭୲୭୰,୫ୟ୶൫𝜃ୡ,ଶ = 1൯ −  𝑃୫୭୲୭୰,ୟୡ୲୳ୣ ൫𝜃ୡ,ଶ൯ቁ

ଶ

𝑃୫୭୲୭୰,୫ୟ୶൫𝜃ୡ,ଶ = 1൯
,                       (12) 

 
In this formulation,  𝑃୫୭୲୭୰,ୟୡ୲୳ୣ୪୪ denotes the actual motor power as a function of the 
operating parameter 𝜃ୡ,ଶ. The term 𝑃୫୭୲୭୰,୫ୟ୶ corresponds to the maximum motor 
power, which is reached when 𝜃ୡ,ଶ approaches its limiting value. However, the design 
variables have been normalized. For  𝜽 = ൣ𝜃ୡ,ଵ, 𝜃ୡ,ଶ, 𝜃ୡ,ଷ൧, the bounds are  𝟎 ≤ 𝜽 ≤ 𝟏.  
The framework can now be applied, with the full problem formulated in the same 
manner as Eq. (5). For the dynamic simulation, the vehicle is driven at a constant 
velocity of 80 km/h, with the state of charge (SOC) set to 80% for both the high-
voltage and low-voltage batteries, and all component temperatures are initialized to 
the ambient value.  

𝐽୘୭୲ୟ୪ = 𝑤ଵ 𝐽୉୐,୮ +  𝑤ଶ  𝐽୫ୟୱୱ +  𝑤ଷ 𝐽ୈ୰୧୴୧୬୥ +  𝑤ସ  𝐽୉୐,୫ + 𝑤ହ 𝐽୮ୣ୰୤, (9) 
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The system dynamics are integrated using MATLAB’s ode15s solver. For the 
optimization, MATLAB’s sequential quadratic programming (SQP) algorithm is used 
to determine the optimal system configuration. 

3.4 Results 

The design framework is evaluated using three different sets of objective function 
weights. Test 1 emphasizes minimizing energy losses through the pump (𝐽୉୐,୮), while 
Test 2 minmizes the mass of the vehicle (𝐽୫ୟୱୱ) and maximize the driving range 
(𝐽ୈ୰୧୴୧୬୥ ), which is assumed to be used as design contain in the objective function.  
Test 3 uses the same objective of optimization of test 2 and places additionally focus 
in the minimizing of the electric motor (𝐽୉୐,୫) with consideration of the penalty term 
to the total objective in order to maximize the motor power (𝐽୮ୣ୰୤). Table 3 presents 
the weights for each tests. Table 4 presents the design parameter values and the 
number of iterations for the three tests.  

Table 4: Weights for the three test. 

Weight Test 1 Test 2 Test 3 

𝑤ଵ 1 0 0 
𝑤ଶ 0 0.5 0.5 

𝑤ଷ 0 0.09 0.08 

𝑤ସ 0 0 0.5 

𝑤ହ 0 0 0.01 

 

The evolution of the objective functions is illustrated in Fig. (6.a). In all cases, the 
objective function decreases during the optimization process, indicating that SQP 
converges to an improved design compared to the initial configuration. Test 1 
converges after three iterations, whereas Test 3 and Test 4 require five and eight 
iterations, respectively, due to the higher complexity of the multi-objective 
optimization.  
Test 1 results in an increased pump size, since the design variable 𝜃ୡ,ଷ reaches its 
upper bound. This outcome is in line with expectations, since enlarging the pump 
increases the motor constant, thereby reducing the current required to drive the pump 
for cooling the liquid. Although a larger pump also leads to higher resistance, the 
current appears squared in the expression of energy losses, so the overall effect 
remains beneficial. As a result the used thermal management system will need less 
power to cool the drive system. In Test 2, the optimizer slightly increases the number 
of parallel battery cells, reflecting the high weight on the driving-range term 𝑤ଷ. 
Lowering 𝑤ଷ reduces the incentive to add parallel cells and thus decreases battery-
pack/vehicle mass. 
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Table 3: Optimization Results 

 Test 1 Test 2 Test 3 

Initial 
values  

Optimized 
values  

Initial 
values  

Optimized 
values  

Initial 
values  

Optimized 
values  

𝜃௖,ଵ 0.0 - 0.5 0.7174 0.5 0.6821 

𝜃௖,ଶ 0.0 − 0.5 0 0.5 0.9754 

𝜃௖,ଷ 0.5 1 0.0 - 0.5 - 

Normalized 
obj. func 

1.58 0.20 1.87 0.009 2.42 1.11 

Number of 
iterations  

− 3 - 5 - 8 

 

Test 3 confirms this behaviour: with the same objective structure but a smaller 𝑤ଷ, the 
optimizer selects a lower mass-scaling parameter, 𝜃ୡ,ଵ = 0.6821, relative to Test 2, 
indicating a reduced vehicle mass. The results, illustrated in Fig. (6.b), show that 
battery temperature decreases as the number of parallel cells increases, which also 
leads to a higher overall mass. While the added mass raises the vehicle’s rolling 
resistance and therefore increases the power demand, this effect is outweighed by the 
reduction in internal resistance due to cell parallelisation.  

However, Test 3 also aims to minimize the energy losses in the driving motor. The 
results show that the optimizer selected a motor size close to the upper limit of the 
design variable. Although this increases the overall vehicle mass, the additional motor 
mass is considered beneficial in this case. This outcome reflects the optimizer’s 
preference for maximizing motor power, since it is explicitly included in the objective 
function through a penalty term.  

 

 

Figure 6: (a) Convergence plot for the three tests, (b) High-Voltage Battery 
Temperature (Test 2).  
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4  Conclusion 

This work employs a design methodology for optimization that captures the multi-
energy domains of dynamic systems. The approach adopts a graph-based modeling 
technique to represent the physical behaviour and interactions among components. 
Within this framework, design alternatives, such as component sizing and topology, 
are systematically integrated.  

The case study investigates an electric bus powertrain under a single operational 
strategy. The results show that variations in component configurations—specifically 
changes in motor, pump, and battery sizes, significantly affect the thermal behaviour 
of the system. As a consequence, the energy demand of the thermal management 
system may either increase or decrease depending on the design choices. 
 
Future work will extend the framework to incorporate multiple operational strategies, 
with particular focus on evaluating the impact of powertrain design on thermal 
management requirements during the regenerative braking phases of the electric bus. 
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