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Abstract: The transition to battery electric vehicles requires electrification
of power systems. The reliability and efficiency of electrical conversion
systems are often compromised due to inadequate thermal management
systems, leading to electronic failures and performance degradation.
Addressing this challenge necessitates the optimization of thermal systems
and the development of innovative vehicle architectures. The proposed
study utilizes a novel design framework for topology and sizing
optimization of electric vehicle energy systems using a graph-based
modeling approach. To address the increasing complexity of electric vehicle
systems, the model incorporates multi-physics modeling, integrating the
interaction between the thermal, electrical, and mechanical domains.
Additionally, the framework uses energy conservation laws to capture
physical system dynamics, making optimization more structured and
helping analyze design trade-offs effectively. To demonstrate its
effectiveness, an electric bus powertrain design is investigated as a case
study, with the goal of optimizing thermal and electrical component sizes
and energy flow, as well as discrete choices in the topology of the system.
The electric bus model incorporates experimentally validated empirical data
obtained through advanced measurement techniques, ensuring credible
optimization and realistic system behavior. This case study demonstrates
how design optimization can influence the efficiency of thermal
management systems.

1 Introduction

The rapid growth of electric mobility is creating new challenges for vehicle design.
Engineers now face increasingly complex systems in which electrical, thermal, and
mechanical domains strongly interact. To address this complexity, advanced
frameworks are required that support system-level optimization. Several approaches
have been developed for modeling the dynamics of such physical systems, including
state-space models [1], partial differential equations [2, 3], bond graphs [4], and block
diagram modeling techniques [5].
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These methods differ in their modularity, computational complexity, and ability to
capture interactions between subsystems. A major difficulty in applying physics-
based models to optimization lies in integration: because models from different
disciplines often exchange information through incompatible signals, communication
and simultaneous simulation across domains can become challenging [6].

To overcome these limitations, this paper applies a conservation-based optimization
framework for dynamic systems of systems. The proposed approach builds on the
graph-based modelling methodology developed by [7], which can be adapted to the
generic formulation introduced by [8]. This procedure is further augmented by [9] to
enable design optimization frameworks for systems governed by conservation laws.
The modeling techniques are physics-based, modular, and designed to capture
interactions across multiple domains [10].

The applicability of the graph-based methodology has already been demonstrated in
several studies. For example, [8] shows its effectiveness in modeling a hybrid electric
UAV powertrain and designing predictive control strategies, while other works
validate its ability to capture the dynamics of thermal—fluid systems against
experimental data [7]. Building on this foundation, another work of [9] applies the
augmented graph-based framework to the optimization of battery-electric vehicles,
investigating the influence of different configurations and component dimensions on
energy efficiency and system mass. A hybrid electro-thermal energy storage system
is also introduced as a representative design example, highlighting the benefits of
employing the framework for system-level optimization of both plant and controller
[11].

While system-level optimization of battery-electric vehicles has received attention in
the literature, notably absent are results derived from real world data validating the
capabilities of this framework as well as the realization of the impact of optimization
frameworks on thermal management systems.To address this gap, the framework is
instantiated here on a Battery Electric Vehicle (BEV) bus powertrain under realistic
operating conditions. Here, electrical and thermal components are jointly optimized.

This leads to the following key contributions of the paper: = Formulation of a general
graph-based framework for multi-domain, multi-objective optimization, enabling
consistent representation and integration of several subsystems based on fundamental
works of Alleyne e.g. [7-14] = Demonstration on a realistic BEV bus architecture,
including strong electrical-thermal couplings, to illustrate the framework’s workflow
and applicability to real-world design problems—> Numerical case studies showcasing
the potential of the proposed approach to improve thermal management systems,
highlighting its capacity to handle coupled domains and system-level objectives.

2 Graph-Based Modeling Basics

This section introduces graph-based modeling [12, 13, 14] and outlines design
optimization for these models [9].
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2.1 Graph-Based Modeling

The graph-based models are derived by applying conservation equations to a
component or system, inherently capturing the storage and transport of energy [15].
In such a representation, energy storing capacitive elements are modeled as vertices,
while the paths for energy transport between storage elements (the vertices) are
modeled as edges. An important feature that enhances the suitability of graph-based
models is their capacity to incorporate orientation, which permits bidirectional power
exchange between vertices. For example, in battery electric vehicle energy transfer
occurs in both directions from the battery to drive the vehicle and back to the battery
during braking (brake energy recuperation), which can be modelled by bidirectional
graphs. The orientation of an edge defines only the reference direction for positive
power flow. Each edge e; is associated with a bidirectional power transfer p;, which
may depend nonlinearly on the states of the adjacent vertices and, if applicable, on an
actuator input.

py = £, 9, ). (1
Here, X]t-aﬂand x]head denote the states of the tail and head vertices of edge j. Applying
conservation of energy to a state x; at vertex v; gives the following dynamic equation:

Cix, = pi" = ™, (2)

where C; > 0 is the vertex capacitance, and pi" and p{"* are the total incoming and

outgoing power flows at vertex i. Appling the previous equation for all states, the
full system dynamics can be rewritten as

Cx = —Mp + Dp?, (3)

where x ist the state vector, M maps the edges to the vertices, D describes the
relationship between the sources and the vertices and p® is a vector of external power
flow and C is a matrix of vertex capacitances [7]. The states and the capacitances used
for the case study are discussed in detail in Section 3.

However the graph based model described by Eq.(3) is not suitable for design
optimization as it is. The next section is limited to the latter.

2.2 Design Optimization

To perform an optimization framework, the system must be expressed in terms of
design variables, which serve as the fundamental degrees of freedom guiding the
search for improved performance. Within a graph-based modeling approach, the
influence of design variables manifests in two principal forms: modifications of
component size and modifications of system topology. From a graph-theoretic
perspective, the size of a component is encoded in the capacitance matrix, which
governs the system’s dynamic behaviour. Scaling the size of a vertex not only affects
the vertex itself but also the connected edges, the resulting power flow, and ultimately
the source contributions.
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For example, increasing the battery capacity Q modifies its internal resistance R,
which in turn changes the dissipated heat according to RI?. This illustrates the
principle of sizing optimization, where adjustments in design variables propagate
through both local interactions and the global system response. In contrast, topology
optimization focuses on exploring alternative system configurations through the
addition or removal of edges. Such modifications affect the same three aspects as in
sizing optimization—vertex properties, edge weights, and source-edge
contributions—and therefore must be analyzed with equal care to preserve system
consistency and physical feasibility.

The formal relationship between design variables and system dynamics is captured in
the augmented graph-based model [9]. Its matrix form is expressed in Eq.(4):

Y. d.Cik = —MPPp + DPSdSp°. (4)

The six design matrices ¥, @, ¥, @, W’and @° map the effects of component
scaling and alternative architectures into the mathematical representation of the
model. Specifically, ¥ .and @, capture the influence of sizing and topology decisions
on vertex properties. The matrices ¥ and @ represent the corresponding effects on
edge scaling and removal, while ¥* and @° account for these effects on the source
edges of the graph-based model. These design matrices are diagonal and contain
design functions that depend on the design variables. For further details cf. [9].

2.4 Formulating the Optimization Problem

The core of this framework lies in formulating and solving the optimization problem,
which can be expressed as follow

mein Jtotal (ec; ez)

. — (5)
subj.to: 8 < 0 < 6,

g@@ <o

Here, Jiora1(0c, 0,) denotes the objective function, which may serve various
optimization purposes, such as minimizing mass, reducing energy losses, or
enhancing overall performance. The design vector 8 comprises the sizing and
topology-related design variables, 8, and 8,, respectively and is defined as

0. (6)
o= (ez )

This vector is defined within specified bounds, such that each variable must remain
between a given lower limit 8 and upper limit 6. The previously discussed augmented
modelling approach is employed within the optimization problem, where the graph-
based model is simulated for a given set of design variables and the objective function
is evaluated from the resulting trajectories.
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Eq. (5) presents also the set of nonlinear constraints with nonlinear function g for
the design problem.

In the following section, this proposed optimization procedure is demonstrated
through its application to a real-world battery electric bus.

3 Design of an Electric Vehicle Powertrain

This section applies the design optimization framework to a case study of a bus
powertrain configuration, considering electrical, mechanical, and thermal power
flows, with data experimentally validated in [16]. The baseline configuration,
including sizing and architecture options, is outlined and represented as a graph based
model. These configuration options are then formulated as an optimization problem
within the framework, where different single- and multi-objective functions are
defined. The results highlight the capability of the framework to identify designs that
meet different requirements.

3.1 Configuration of the Bus Electric Powertrain

Fig 1 presents the baseline EV powertrain configuration, and Figs. 2—4 show the
graphical models of the three parts of the powertrain.
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Figure 1: Electric vehicle baseline powertrain configuration.

The powertrain consists of a battery system as the main power source, connected in
parallel to a high-voltage direct current (DC) bus. This bus distributes power to three
subsystems: (i) the Drive Inverter System (DIS), which drives an AC motor
responsible for vehicle propulsion; (ii) an inverter that supplies the HVAC system
(heating, ventilation, and air conditioning); (iii) an Electronic Accessory Control Unit
(EACU) and (iiii) an electric battery thermal management module (eBTM) to fulfil
the conditional needs of the battery. Note that eBTM is not modeled in this case study.
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In addition, the high-voltage bus is connected through a switch to a dissipative resistor
that prevents overvoltage events.
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Figure 3: Graph-based model of the low voltage bus

The EACU, implemented as a bidirectional DC/DC converter, steps the voltage down
to supply a low-voltage DC bus. This low-voltage bus both charges a 24 V auxiliary
battery and powers additional electrical loads. The auxiliary battery in turn drives the
cooling pump, which circulates coolant through the liquid cooling loop of the drive
system, and the fan, which extracts heat from the coolant via a heat exchanger to the
ambient environment.
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Figure 4: Graph-based of the Cooling System

Inputs to the system include the duty cycles of the three inverters/converters. The duty
cycles of the DIS and the HVAC inverter are held constant to satisfy the required
vehicle speed and the HVAC load demand, respectively. By contrast, the duty cycle
of the EACU is controlled to ensure the auxiliary battery is charged with exactly the
power required by the pump and the radiator.

In this study, the pump and radiator rotational speeds, as well as the vehicle velocity,
are kept constant. This assumption allows the investigation of a single operating point.
Switch input commands include (i) the buck/boost directionality for each of the three
converters and (i1) the connection command for the dissipative resistor. For the
considered case study, all converters are fixed in buck mode. Disturbances (sink
states) include ambient air temperature, the current demand by the HVAC system, and
the vehicle’s velocity demand profile.

For clarity, the definitions of the state vector p and the connection matrix C (in
Eq. (4)) varies depending on its type as specified in Table 1.

Table 1: Vertex types and capacitances.

Description State Capacitance
Voltage %4 c,V
Battery state of charge q QV.v(q)
Current I LI
Temperature T Cr
Translating Mass v mv
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The elements capacitance’s are electrical capacitance Ct, inductance L, mass m,
battery capacitance QV,., and thermal capacitance C,. Note that, Q represents the
battery capacity and V., is the open circuit voltage of the battery. This graph contains
vertices corresponding to battery state of charge (SOC), current, voltage, temperature
and velocity. In Figures (2), (3) and (4), the voltage, temperature, and velocity states
are indicated by green, yellow, and orange vertices, respectively.

The state battery state of charge (SOC) are given by the vertices v; and vy, in the
Figures. (2) and (3), respectively. There are six types of edges in this graph
representing different mechanisms of power transfer: electrical power, controlled
electrical power, resistive losses, advection, conduction, and convection. Power flows
of the same type follow similar governing equations, as specified by the corresponding
edges in Table 2.

This case study explores three sizing design options. The next section relates these
design options to the graph-based model within the proposed framework.

Table 2: Power flow edge equations by type.

Edge Type Edge equation Corresponding edge numbers

Electrical power P = x].taﬂx]head 1-3,9-11, 13-16, 18, 22, 23, 30, 32,
36, 73,75, 78, 37-40, 46, 48, 50, 51

Controlled electrical power P =y xjta“xjhead 17,31, 47

Resistive losses P = k]_(x]_tail)z 4,5,6, 12,19, 24, 33, 42, 41, 43,
49, 52, 54, 55,

Advection P = kjujxjta“ 58-66, 69, 70

Conduction P =k; (Tjta“ - Tjhead) 7,8, 21, 26,35,77

Convection P, = k; (x].taﬂ - x]head) 20, 25, 34, 67, 68

a For edge 1 and 24, x}aﬂ = Voey (xj““), where V, ., is the corresponding battery open circuit voltage.

b. For edge 37: x]l-1eacl = Vocvl (x}‘ead), where Vy¢y is the open circuit voltage of the low voltage battery.

b Example of controlled electrical power for edge 17: U and I represent voltage and current at two ends of the
edge and u represents the duty cycle oft the Driving Inverter System (DIS).

3.2 Applying the Framework to the Battery Electric Vehicle Bus Powertrain

The discussed design optimization framework is applied to the case study system
and requires at first step the definition of the design variables, which are described in
Eq. (7). The used design function is

f(gc,m [,l) =1+4p6,, (7)
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and establishes a relationship between a design variable 6, ; and an output f. The first
design option in this case study includes size of the battery (6. ;). Sizing of the battery
is considered analogous to adding fractions of cells in parallel ny,., which directly

affects battery parameters such as capacity and mass. To reflect this, the first entry of
Y. in Eq.(4) is defined as:

flpm (00,1) = npar(ec,l) = npar,nom f (90,1: :unpar)- (8)

Here, ,unparis set to 0.47, ensuring that the number of parallel cells np,varies between

6 and 18. The nominal number of parallel cells in the high-voltage battery, nparnom,
is defined as 6. Important information is that the size of the series cells is kept constant
during the optimization procedure to ensure the required voltage level for the driving
motor. As the number of parallel cells in a battery pack increases, both the electrical
capacity (vertices: v, v3) and the thermal mass (vertices: v,, Vs) scale proportionally.
The internal resistance of the battery is also influenced by the overall pack size, which
is modeled in edge e,. The design functions applied in this study are described in
detail in [9].

The parameters 6. ,and 6. 5 are introduced to model the scaling of the motor and pump
sizes, respectively. An increase in these parameters corresponds to an increase in the
motor constant, which in turn leads to higher resistance in the associated components.
Note that the motor constant defines the torque a motor can supply per unit of current.
Using the design function in Eq.(7) captures this effect, as illustrated in Fig. (5).

F(0c,1, 1)

Figure 5: Design functions for component parameters. (a) Pump parameters and (b)
motor parameters (blue: motor constant, red: resistance, green: mass).

Motor mass increases with scaling, thereby contributing to the total vehicle mass,
which is used to compute the power flow from rolling and gradient resistances at edge
e,7. The acceleration resistance is not considered in this study, as a constant driving
velocity is assumed. As shown in Figure (5.a), the pump mass is considered negligible
and has no impact on the model. The primary effects occur at edges ess and es,, where
scaling the motor constant results in increased pump resistance.
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In the next step of the framework is to define the total objective function, which is
defined as

JTotal = W ]EL,p + Wy Jmass T W3 ]Driving + Wy JeLm +Ws ]perf: (9)
Here, Jgrp = Rpump fus, (96,1)I§ump, minimizes the energy losses through the pump

where Ryymp and Iymp denotes the resistance of the pump and the current supplied
to the pump, respectively. /.55 Minimizes the mass of the vehicle and is defined as

mg +mmotor'f(9c,2,ﬂez7)+nser'mcell'npar,nom-f(ec,bﬂnpar)

Myef

]mass -

(10)

In this formulation, m, ¢ denotes the reference mass of the vehicle, taken as its initial
mass. The parameters nger and Nparnemrepresent the number of battery cells
connected in series and the nominal number of cells connected in parallel,
respectively. m¢ep corresponds to the mass of a single battery cell and m oty 1 the
mass of the driving motor. Eq.(9) considers also

2
; _ (10c1=1npa)~TOc 1 binpar)
Driving =
riving f(gc,1=1'ﬂnpar)

; (11)

which is used as a penalty term to satisfy design constraint, ensuring that the vehicles

reach a maximum driving range. Jg, , evaluates the efficiency and effectiveness of

the electrical motor, where optimization leads to reduced losses and better reliability.
. . R Oc,2, 12

This function is defined as Jg m = (Rmotor (62 Meg)motor) .

2
RmotorImotor

In this equation, Ry, represents the electrical resistance of the motor, while I, 4tor
denotes the electrical current supplied to the motor. Last but not least, J/yers in Eq.(12)

aggregates overall performance measures not explicitly included in the other terms,
ensuring balanced system performance.

2
(Pmotor,max(ec,z = 1) - Pmotor,actue (9c,2))
Pmotor,max(ec,z = 1)

]perf = , (12)

In this formulation, Ppotoractuen denotes the actual motor power as a function of the
operating parameter 6 ,. The term Py otormax cOrresponds to the maximum motor
power, which is reached when 6, , approaches its limiting value. However, the design
variables have been normalized. For @ = [9c,1: 0,2, Hc,3], the boundsare 0 < 0 < 1.
The framework can now be applied, with the full problem formulated in the same
manner as Eq. (5). For the dynamic simulation, the vehicle is driven at a constant
velocity of 80 km/h, with the state of charge (SOC) set to 80% for both the high-
voltage and low-voltage batteries, and all component temperatures are initialized to
the ambient value.
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The system dynamics are integrated using MATLAB’s odelSs solver. For the
optimization, MATLAB’s sequential quadratic programming (SQP) algorithm is used
to determine the optimal system configuration.

3.4 Results

The design framework is evaluated using three different sets of objective function
weights. Test 1 emphasizes minimizing energy losses through the pump (Jgy,p), while
Test 2 minmizes the mass of the vehicle (Ji,4ss) and maximize the driving range
(priving )» Which is assumed to be used as design contain in the objective function.
Test 3 uses the same objective of optimization of test 2 and places additionally focus
in the minimizing of the electric motor (Jgi, ,) With consideration of the penalty term
to the total objective in order to maximize the motor power (Jperf). Table 3 presents

the weights for each tests. Table 4 presents the design parameter values and the
number of iterations for the three tests.

Table 4: Weights for the three test.

Weight Test 1 Test 2 Test 3
w; 1 0 0
w, 0 0.5 0.5
Wy 0 0.09 0.08
Wy 0 0 0.5
ws 0 0 0.01

The evolution of the objective functions is illustrated in Fig. (6.a). In all cases, the
objective function decreases during the optimization process, indicating that SQP
converges to an improved design compared to the initial configuration. Test 1
converges after three iterations, whereas Test 3 and Test 4 require five and eight
iterations, respectively, due to the higher complexity of the multi-objective
optimization.

Test 1 results in an increased pump size, since the design variable 6.3 reaches its
upper bound. This outcome is in line with expectations, since enlarging the pump
increases the motor constant, thereby reducing the current required to drive the pump
for cooling the liquid. Although a larger pump also leads to higher resistance, the
current appears squared in the expression of energy losses, so the overall effect
remains beneficial. As a result the used thermal management system will need less
power to cool the drive system. In Test 2, the optimizer slightly increases the number
of parallel battery cells, reflecting the high weight on the driving-range term ws.
Lowering ws reduces the incentive to add parallel cells and thus decreases battery-
pack/vehicle mass.
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Table 3: Optimization Results

Test 1 Test 2 Test 3
Initial Optimized Initial Optimized Initial Optimized
values values values values values values
0.1 0.0 - 0.5 0.7174 0.5 0.6821
6., 0.0 - 0.5 0 0.5 0.9754
6.3 0.5 1 0.0 - 0.5 -
Normalized 1.58 0.20 1.87 0.009 2.42 1.11
obj. func
Number of — 3 - 5 - 8
iterations

Test 3 confirms this behaviour: with the same objective structure but a smaller ws, the
optimizer selects a lower mass-scaling parameter, 6., = 0.6821, relative to Test 2,
indicating a reduced vehicle mass. The results, illustrated in Fig. (6.b), show that
battery temperature decreases as the number of parallel cells increases, which also
leads to a higher overall mass. While the added mass raises the vehicle’s rolling
resistance and therefore increases the power demand, this effect is outweighed by the
reduction in internal resistance due to cell parallelisation.

However, Test 3 also aims to minimize the energy losses in the driving motor. The
results show that the optimizer selected a motor size close to the upper limit of the
design variable. Although this increases the overall vehicle mass, the additional motor
mass is considered beneficial in this case. This outcome reflects the optimizer’s
preference for maximizing motor power, since it is explicitly included in the objective
function through a penalty term.

~—— Initial design: 6,.,= 0.5
=== Optimized design: 6.,= 0.7173

20.1

normalized objective Function Value

4 5 6
Iteration

(a)

-
o

5 10 15 20 25 30 35 40 45 50

Time in s

(0)

Figure 6: (a) Convergence plot for the three tests, (b) High-Voltage Battery
Temperature (Test 2).
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4 Conclusion

This work employs a design methodology for optimization that captures the multi-
energy domains of dynamic systems. The approach adopts a graph-based modeling
technique to represent the physical behaviour and interactions among components.
Within this framework, design alternatives, such as component sizing and topology,
are systematically integrated.

The case study investigates an electric bus powertrain under a single operational
strategy. The results show that variations in component configurations—specifically
changes in motor, pump, and battery sizes, significantly affect the thermal behaviour
of the system. As a consequence, the energy demand of the thermal management
system may either increase or decrease depending on the design choices.

Future work will extend the framework to incorporate multiple operational strategies,
with particular focus on evaluating the impact of powertrain design on thermal
management requirements during the regenerative braking phases of the electric bus.
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