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Abstract: The EU-funded SmartCorners project explores user-centered
comfort in vehicles through Al-driven climate control. A method is
developed to train a climate control algorithm with the help of Al and is
trained in a comprehensive vehicle simulation model. Beyond
personalization, Al is leveraged to optimize energy efficiency. The project
also addresses the application of the virtually developed algorithm in a
real-world vehicle. Initial simulation results are discussed in this paper
with an outlook of the upcoming vehicle studies to validate the simulation
results.

1 Introduction

Vehicle cabin comfort is a multifaceted concept influenced by thermal conditions,
noise, vibration and harshness (NVH) levels, as well as air quality. Importantly,
comfort is highly subjective — conditions that are acceptable for one occupant may be
uncomfortable for another. Thermal comfort is typically managed through parameters
such as zonal temperature settings, blower speed, air distribution, and the position of
the recirculation flap. Zonal climate control systems have enabled personalized
thermal environments for different seating areas, allowing occupants to tailor
conditions to their preferences. However, accommodating these varying and dynamic
preferences presents significant challenges for both the HVAC system and its control
strategies.
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Traditional control strategies are often not optimized to balance user comfort with
energy efficiency. By integrating artificial intelligence (Al) into simulation models
and training it across diverse virtual scenarios, it is possible to develop adaptive
solutions that significantly reduce the effort required for software development and
calibration. Furthermore, Al systems can continue to learn post-deployment in real-
world vehicles, enhancing their decision-making capabilities over time. This
continuous learning approach simplifies the development of intelligent controllers,
eliminating the need for multiples specialized control algorithms tailored to specific
objectives such as individual comfort, overall cabin comfort, or energy efficiency
(e.g., maximizing driving range).

2 Methodology

The development of Al-based control systems necessitates training with high-quality
data to enable reliable decision-making. Acquiring such data using physical test
benches or vehicles is time-consuming and costly. This challenge can be effectively
addressed by using high-fidelity simulation models. By leveraging virtual
environments, it becomes possible to generate large volumes of representative data
for training Al algorithms, significantly reducing the need for physical testing.

This section provides a detailed overview of the proposed methodology, including the
simulation setup, data generation process, and training pipeline for the Al controller.

2.1 Plant model

The plant model represents a comprehensive simulation model of the physical system
under study. A highly accurate plant model ensures that the behavior of the simulated
system closely mirrors real-world dynamics, thereby enhancing the reliability of Al
training and control development. Any discrepancies in model accuracy can directly
impact the performance and robustness of the resulting control strategies. Therefore,
special emphasis is placed on the validation and calibration of the plant model to
ensure it serves as a trustworthy foundation for virtual experimentation and Al-based
control design.

The simulation environment incorporates detailed models of the vehicle, HVAC
system, cabin, controller, driver and passenger comfort. Each model is designed with
the necessary inputs and outputs to enable seamless interaction with the Al-based
control system. Figure 1 provides a comprehensive illustration of plant model and the
according interfaces. This section provides an in-depth description of the thermal and
HVAC systems, as well as the cabin and comfort models, as the primary focus is on
optimizing energy consumption of these systems while maximizing passenger
comfort.
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Figure 1: Overview plant model

Vehicle Thermal Management System (VTMS)

The thermal and HVAC system of the demo vehicle has a R290 and a R1234YF based
refrigerant circuit and a coolant circuit. The vehicle can operate with both refrigerant
circuits but in SmartCorners only R1234YF refrigerant circuit is used. Figure 2 shows
the thermal management architecture consisting of the refrigerant circuit indicated in
green color, the low-temperature circuit (LT-Circuit) indicated in blue color, the
medium-temperature circuit (MT-Circuit) indicated in yellow color, the high-
temperature circuit (HT-Circuit) indicated in red color, and the battery circuit (Bat-
Circuit) indicated in grey color. The different operating temperatures of the circuit are
determined based on the components placed in the circuits and their thermal
requirements.
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Figure 2: Layout coolant and refrigerant circuit
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The plant model of the system is developed in AVL CRUISE™M, a system
development software from AVL. The components are calibrated with the help of the
measurement data gathered from the demo vehicle. The whole model is then validated
with measurements from different operating conditions of the complete system.

Vehicle Cabin and Comfort Model
To accurately represent passenger comfort and cabin thermal dynamics, two
complementary cabin models are developed:

Thermal cabin model:

A high-fidelity computational fluid dynamics (CFD) model is used to simulate
airflow, heat transfer, and passenger comfort within the cabin. The model incorporates
detailed geometry of the demonstrator vehicle (Mercedes-Benz B-Class), material
properties of interior laminates, and additional heating devices such as seat heaters,
steering wheel heating, and infrared panels. Environmental factors such as solar load
and ambient conditions are also included. This model is primarily used for generating
a 1D Matlab/Simulink model.

The 1D cabin model is a reduced-order representation derived from the high-fidelity
3D CFD cabin model. Its primary purpose is to provide a computationally efficient
simulation environment for control development and real-time applications. The
model uses aggregated thermal properties and response characteristics obtained from
the 3D model. These derived parameters include heat transfer coefficients, thermal
capacities, and airflow distribution characteristics.

Figure 3: Body and clothing segments for EHT model
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Cabin Comfort Modeling and Surrogate Model Development

To model thermal comfort in the cabin, the previously developed 3D CFD cabin
model is utilized. This high-fidelity model includes detailed geometry of the
demonstrator vehicle and incorporates thermal manikins to represent passengers.
Each manikin is segmented into 17 body parts, enabling the calculation of local
surface temperatures and heat fluxes under various operating conditions. The exact
body parts and clothing segments are shown in Figure 4.
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Figure 4: Body and clothing segments for EHT model

For comfort evaluation, the Equivalent Homogeneous Temperature (EHT) metric is
applied. The EHT combines air temperature, mean radiant temperature, and air
velocity into a single value, providing a comprehensive measure of thermal comfort
in non-uniform environments such as vehicle cabins. Conceptually, EHT represents
the wall temperature of a uniformly conditioned space under calibrated conditions,
assuming negligible air velocity and equal mean radiant and air temperatures. Higher
EHT values indicate reduced heat loss, while lower values correspond to increased
heat loss. The EHT is computed from the manikin heat flux using the following
relationships:
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where Q is the heat flux on the manikin surface, T is the skin temperature, and Xo
and x; are calibration constants derived from regression analysis. Although the 3D
CFD model provides high accuracy, its computational cost makes it unsuitable for
real-time control development. To overcome this limitation, a fast-running surrogate
model (FRM) is derived. A Design of Experiments (DoE) study is conducted to
systematically vary key parameters such as HVAC settings, ambient conditions, and
solar load. The resulting dataset is processed using AVL CAMEOQ, which generates
mathematical response models for comfort indices and thermal states.

In Figure 5 plots of the model qualities are shown. The green point in the graphs
represent the validation experiments which were not used for the mathematical model
training. The shaded areas indicate the accuracy of the 3D model, £2K.
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Figure 5: Example results for FRM

These models are packaged as a Functional Mock-up Unit (FMU) and integrated into
the plant model, enabling real-time simulation for reinforcement learning (RL)
training and hardware-in-the-loop (HiL) applications.

Virtual Driver Model

A virtual driver model is integrated to emulate human interactions with the climate
control system. It adjusts parameters such as target cabin temperature, blower speed,
and air distribution modes based on comfort feedback. This enables realistic training
scenarios for the Al controller and facilitates user-specific adaptation.

2.2 RL Framework

This section gives a brief introduction to the most important concepts of RL and
provides the context under which RL can provide solutions for the problem of optimal
thermal control of the SmartCorners project.

Introduction to RL

Contribution: 2025 FKFS Conference on Vehicle Aerodynamics and Thermal Management
15 — 16 October 2025 | Leinfelden-Echterdingen



An RL agent is the entity that interacts with an environment to learn how to achieve
a goal by maximizing a reward it receives from the interaction. The training
environment is the simulated context under which the agent learns how to act in the
real world. The schema is shown in Figure 6. The training environment contains states,
as well as a set of rules or transition dynamics under which the states transition from
one to another. The agent interacts with the environment by

o observing certain states exposed by the environment
e setting actions within the environment, and
e receiving rewards for its actions.

The agent designs a control policy, which is a set of rules that predict the optimal
actions an agent should apply given a set of observations. RL training refers to the
process of continuous interaction between the agent and the environment during
which the agent optimizes the control policy by maximizing the reward it receives
after applying an action.
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Figure 667: Scheme of the RL training process. The agent trains a control policy to
optimally interact with the training environment. It receives an observation and a
reward after each action. The optimal policy maximizes the agent’s expected reward.

In the context of SmartCorners, the training environment contains all information
relevant to the optimization of the thermal controls of the thermal control unit.
Specifically, this includes

o an interface to the high-fidelity plant model described in Section 2.1
o amodel for all relevant ambient conditions

e amodel for driving cycles
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The agent interacts in a stepwise and discrete fashion with the environment. That is,
at each given point in time, the agent observes some states at a discrete time,
determines an appropriate action based on its observations, and applies the action
before the environment transitions to the next discrete time step with a new state.
During the project we used the interface described in OpenAl’s Gym library
Gymnasium. This interface is simple to use as it only consists of two methods, the
initialize method and the step method, which transitions the environment to the next
state given an action and returns the current observation and reward.

Ambient Model & Driving Cycles

The training process must contain a model of the ambient environment under which
the electric vehicle (EV) is operated. In the RL framework, the ambient model is
intrinsically embedded in the training environment. The ambient model must reflect
the real-world conditions under which the EV is operated. Moreover, for the sake of
robust calibration, the model should contain as many so-called corner cases as
possible, i.e. special cases under which either the simulation model or the control
policy will respond in extreme ways.

The ambient model contains all necessary information for all model inputs and
parameters that are not under direct control of the agent. This information may be
given in the form of input distributions, e.g. for ambient weather conditions, or
specific driving cycles, such as Worldwide Harmonized Light-duty vehicles Test
Cycle (WLTC) for vehicle speed.

In the context of RL, the combination of a single driving cycle with a set of ambient
conditions constitutes a so-called episode. During training the agent should be trained
on as many representative episodes as possible. For this reason, the training
environment was implemented in such a way that random episodes could be generated
during training, i.e. the agent can be trained on a theoretically infinite number of
realistic episodes.

RL Reward, Targets & Constraints

In RL, the agent will tune its control policy in such a way to maximize the reward it
receives from the environment for its actions. In this sense, the reward represents the
target of the underlying optimization problem, and it must be carefully designed to
respect and trade-off several conflicting goals with each other.

For the SmartCorners project, the reward must therefore reflect all goals of thermal
control as well as measures for user comfort based on individual preferences.
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For this reason, the RL framework allows the definition of multiple types of control
targets, and it allows the definition of multiple targets at the same time. These
following types of control targets have been implemented so far:

e Optimization Target: allows to minimize/maximize a system output
channel.

o Control Target: allows to control a system output channel towards a given
demand channel. The demand channel must be contained in the ambient data
model.

e Constraints: allows to force a system output within a specified range of
values.

The agents’ reward is a combination of all defined target functions. For the
SmartCorners project, the following targets have been considered:

o Cabin humidity must be controlled towards a target of 40%
e User comfort must be maximized.
Boundary Conditions / Trainings Setup

The training setup defines the temporal resolution of the simulation, the initialization
of each episode, and the physical and operational constraints that ensure safe and
meaningful learning.

Each training episode represents a two-hour driving scenario with a total duration of
7200 seconds, with simulation steps of 1 second. The action is updated every 5
seconds.

At the start of every episode, the ambient temperature and humidity are sampled
randomly to promote generalization. The ambient parameters continue to vary during
the episode to reflect changing driving conditions.

e Ambient temperature: uniformly sampled from 10 °C to 30 °C
e Relative ambient humidity: uniformly sampled from 0% to 100%

To maintain physical plausibility and passenger safety, multiple constraint
mechanisms are applied:

e Hard and soft clipping: Cabin temperature and humidity are subject to both
hard limits (enforced at every step) and soft limits that introduce penalties
when approached

e Actuator normalization: The controllable actuators are scaled to a
normalized action range [-1, 1] and then rescaled to their allowed range. This
ensures that the actuators stay inside their allowed ranges

The reward function combines two competing objectives:

e Thermal comfort (primary objective)
e Humidity regulation
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Additional penalties are introduced when the observations reach a soft limit. The
rewards are not scaled.

The training is carried out on GPU hardware when beneficial for algorithm speed, but
may fall back to CPU execution if faster for specific algorithms (e.g. PPO). The
training time is approximately 5 hours.

3 Results & Conclusion

After training several different RL algorithms, the best candidate is chosen. The
chosen agent is based on the AWAC algorithm. This type of algorithm allows training
on both offline and online data. Offline data is used to direct the agent in a good
starting direction for online training in the real environment.

The final agent uses four environment observations: Ambient temperature, Relative
ambient humidity, Cabin temperature, Relative cabin humidity

To demonstrate the agent in action, Figure 7 shows the agent’s actions in a driving
simulation. The first column of plots shows the observations of the algorithm, the
second column shows the actions and the third column shows the resulting reward and
comfort.
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Figure 7: Driving simulation

It can be observed that the trained algorithm selects a cabin set temperature that
results in a comfortable thermal sensation at the end of the driving cycle. Moreover,
the cabin humidity is close to its target value of 40%. However, greater air
recirculation would have been possible in this case.

Nevertheless, this example demonstrates that the training of the algorithm was
successful and can be extended to include additional influencing factors such as
solar radiation and vehicle speed. The results also indicate that it is particularly
challenging for the Al to learn an appropriate set temperature during the heat-up
phase. Especially within the first 200 seconds, the set temperature fluctuates
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significantly over short time intervals. This behavior is likely due to the limited
influence of the set temperature during this phase, as the actual cabin temperature is
still far from the target value. Such conditions may encourage random set
temperature selections during training, leading to these pronounced variations.

4 Outlook

The subsequent steps in the reinforcement learning (RL) training process involve
extending both the observation space and the action space of the RL agent. Regarding
observations, the model will be augmented to incorporate indicators of user comfort,
such as perceived air quality based on CO: concentration, and the likelihood of
windshield misting due to humidity levels. These parameters must be maintained
within predefined thresholds while minimizing electrical energy consumption.

Furthermore, the learning process will be expanded beyond a generic user profile to
include adaptation to individual user preferences. This personalization will be
achieved by analyzing user interactions and manual adjustments to system settings,
which will serve as feedback signals for the learning algorithm.

Following successful demonstration of user-specific learning behavior in a simulation
environment, the approach will be validated in a real-world test vehicle. Initially, the
baseline algorithm trained on the standard user profile will be deployed. As the vehicle
is operated by individual users over time, it is expected that the frequency of manual
interventions will decrease, thereby enhancing the overall user experience through a
more intuitive and personalized system response.
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