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Abstract: The vehicle market is evolving rapidly. New players are 

entering the market, many variants of a vehicle are investigated prior to 

freezing the design, and more. In this context, vehicle aerodynamics is 

ever more crucial. It directly impacts the vehicle range and plays a major 

role in meeting regulation targets. Vehicle manufacturers must also keep 

in mind the need for a shorter time-to-market, where one must design 

faster and not permit late-stage redesign. Therefore, faster and earlier 

assessment of vehicle aerodynamics is imperative. Computational Fluid 

Dynamics (CFD) has opened the door to virtual aerodynamic testing, 

allowing manufacturers to test their vehicle shapes before developing a 

costly and time-intensive prototype that then needs to be experimented on 

using a wind tunnel. While high-fidelity CFD, such as the PowerFLOW® 

software from Dassault Systèmes, will remain an integral part of the 

aerodynamic development process of major OEMs, the growth of 

machine learning (ML) and continual improvement of its algorithms has 

opened doors to speed-up computational aerodynamics, allowing 

automotive manufacturers to get feedback on their vehicle design in a 

matter of minutes. The current work illustrates how aerodynamic data 

obtained using the Lattice Boltzmann Method with PowerFLOW® 

combined with transformer-based ML can enable car manufacturers to 

obtain clean 3D contour plots of the vehicle’s surface X-force (or any 

other simulated quantity) distribution and the associated integrated 

vehicle drag force within several minutes on a single GPU (after training 

of the ML model). This represents a significant reduction in 

computational cost and time. 
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1 Introduction 

The ground vehicle market continues to shift its focus to more energy-efficient 

designs. As a result, aerodynamic performance of the vehicle is more critical than ever 

in achieving range and regulatory goals. In order for a vehicle platform to reach its 

aerodynamic performance targets, vehicle manufacturers must evaluate more designs 

virtually. In order to meet time-to-market deadlines, there is a need to evaluate more 

designs earlier in the design phase (such as the concept design phase). This is 

sometimes referred to as “left-shifting” of simulation within the design cycle.  

Historically, high-fidelity Computational Fluid Dynamics (CFD) tools using the 

Lattice Boltzmann Method (LBM) such as the PowerFLOW® software from Dassault 

Systèmes have been used to virtually evaluate vehicle aerodynamics. This will remain 

an integral tool in both early and late stages of the design process. In early stages of 

the design process, high-fidelity CFD will be used to generate datasets with which to 

train machine learning (ML) models. In later stages of the design process where the 

highest level of simulation accuracy is required, high-fidelity CFD will continue to be 

used to verify final designs and validate physical tests. With the growth of machine 

learning surrogate models, it is possible to evaluate the aerodynamics of a vehicle 

virtually in a matter of minutes [1]. This will accelerate the aforementioned “left-

shifting” of simulation within the design cycle by allowing design studios to quickly 

and easily evaluate the aerodynamic performance. This will ultimately allow vehicle 

OEMs to evaluate significantly more designs than they would have using traditional 

CFD methods, leading to more innovative and efficient vehicles. 

Vehicle OEMs have been using CFD to predict their vehicle aerodynamics 

performance at different stages within the design process for decades. As a result, they 

have acquired a large database of simulation results. These existing datasets can be 

leveraged as a promising starting point for training ML models. Integrating new high 

fidelity simulation datasets into these trained models will further enhance their 

prediction capabilities. 
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There has been a surge of effort in scientific machine learning for CFD in recent years 

covering most aspects of CFD with varying degrees of success [2] [3] [4]. Early work 

focused on the development of novel RANS turbulence model closures with more 

recent extensions being developed for LES closures [5] [6] [7]. A large amount of 

effort has centered on physics-informed neural networks (PINNs) [8] [9] [10] as a way 

of solving conservation equations using neural networks. PINNs have some appealing 

qualities including straightforward blending of data with conservations laws, being 

fully differentiable, easy adaptation to complex geometries, and the ability to easily 

incorporate a variety of boundary conditions. In spite of these apparent advantages, 

PINNs are not competitive with traditional solvers and remain an active area of 

research. Machine learning algorithms have also been developed to discover new 

discretization strategies [11], accelerate traditional solvers [12], improve mesh 

generation [13] [14], discover equations from data [15], generate super-resolved flow 

fields from under-resolved data [16] [17] [18] [19], and most relevant to this 

manuscript, develop surrogate models [20] [21] [22] [23] [24] [25]. The majority of 

the work on ML has focused on data generated from Navier-Stokes simulations 

including RANS, LES, and DNS datasets. However, some recent work has emerged 

on fully-differentiable Lattice Boltzmann solvers [26], learning Lattice Boltzmann 

collision operators [27], and learning collision operators for the Bolztmann equation 

[28]. Regardless of the algorithm used, any scientific machine learning approach is 

strongly influenced by the quality of the training data. The present work uses 

PowerFLOW® CFD to generate state of the art training datasets for the development 

of surrogate models. 

In this study, we apply a transformer-based machine learning surrogate model [25] 

[29] to the design of a vehicle external surface. The input to the neural network is a 

set of PowerFLOW® LBM CFD simulations applied to a sedan vehicle with varying 

design changes made to the A-surface. It is important to note that this ML 

methodology uses history-based data as input, meaning that geometric parameters are 

not required as input to the neural network. The reference vehicle model used in the 

present study is the DrivAer model from TU Munich [30]. PowerFLOW® CFD was 

previously validated on this particular vehicle model [31]. The trained neural network 

was used to predict the X-component of the surface force contours. This result was 

then used to calculate the overall vehicle drag coefficient (CD) via integration over the 

entire vehicle surface. Both the surface X-force contours and CD were found to be in 

excellent agreement with the PowerFLOW® results, even for vehicle designs outside 

of the training set. To the best of our knowledge, this is the first time an ML model 

has been trained using data generated with the Lattice Boltzmann Method in the 

context of vehicle aerodynamics.  
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2 CFD Numerical Approach to Generate the Dataset 

The design set used for training contained large changes to the vehicle A-surface, 

including shape changes to the front bumper, windshield, and rear glass as well as ride 

height and front wheel deflectors on/off. These shape changes were applied through a 

mesh morphing technique. Figure 1 shows a subset of the designs that were used to 

train the neural network. A total of 50 DrivAer designs were included in this study.  

 

Figure 1: Subset of DrivAer designs used in study 

 

All 50 of the DrivAer designs used in the present study were simulated using the 

PowerFLOW® LBM CFD solver. A full numerical description along with information 

regarding the Very Large Eddy Simulation (VLES) turbulence model can be found 

within the following references [32] [33] [34] [35] [36] [37] [38] [39] .  

Such a CFD approach has been extensively validated by comparison to physical test 

from wind tunnel data [40] [41] [42] [43]. This gives confidence into the accuracy of 

the database. 

The results of these CFD simulations were used as the input dataset to the neural 

network. The external aerodynamics simulation setup utilized an open-road scenario, 

consisting of a large domain with a velocity inlet far upstream of the vehicle and a 

pressure outlet far downstream. The walls and ceiling of the domain were modeled as 

frictionless walls. The floor was modeled with a moving wall condition to match the 

freestream velocity. Incompressible flow was assumed, with a freestream of 𝑈∞ =
140 𝑘𝑝ℎ and an ambient temperature of 𝑇 = 20°𝐶. The reference area used for drag 

coefficient calculation was 𝐴 = 2.156 𝑚2. For added realism, the wheels of the 

vehicle were encased in a local rotating reference frame in order to simulate the effects 

of rotating wheel geometry with a sliding mesh technique. 
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The fluid volume was setup using a variable resolution scheme. The finest fluid cell 

size was 2.5mm, applied on regions containing highly unsteady flow and/or large 

velocity gradients such as mirrors, a-pillars, and wheels. The fluid and surface grid 

used for simulation was generated automatically by the PowerFLOW® discretizer. 

This resulted in 97M elements in the fluid domain and 7M elements on the vehicle 

surface. 

All of the transient CFD simulations were run for 2 seconds of physical time. The end 

of the initial transient was identified using the approach described in [44]. The time-

averaged drag force for all of the simulations converged within 1 count (0.001 CD) 

accuracy with a 95% confidence interval. Figure 2 shows an example of the drag time 

history plot for one of the simulations. This 50-simulation set resulted in a broad range 

of time-averaged overall CD values, ranging from 0.247 to 0.308.   

 

Figure 2: Transient drag history plot for Run 1 

 

Before inputting the CFD dataset into the neural network, some post-processing was 

performed. The data on the surface of the vehicle directly from CFD contained around 

3M points. This was too large for the neural network to run on a single-GPU card due 

to memory limitations. Therefore, the per-simulation dataset size was reduced from 

≈3M points to 130k points via Voronoi kernel spatial interpolation [45]. Doing so 

introduced a mean error of 1.73% into the interpolated dataset. All of the results 

forthcoming neglect this error and compare the interpolated data (ground truth) to the 

ML prediction. 
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3 Machine Learning Training and Predictions 

A transformer-based machine learning technique [25] [29] was used to train on the 

entire vehicle surface X-force contours from the PowerFLOW® simulations. A 90-10 

training-test split of the 50-simulation dataset was used, resulting in 45 training points 

and 5 blind test points. Figure 3 shows the training and test loss curves where we track 

the evolution of the mean squared error for the training and test sets as a function of 

epoch. The training had completed after 700 epochs. 

 

Figure 3: Training and test loss curves 

 

The total vehicle drag force is calculated by integrating over the vehicle surface the 

X-component of the force per unit area surface predictions from the machine learning 

model. Analyzing both of these metrics is key to evaluating the accuracy of the model. 

Figure 4 shows a comparison of the X-component of the surface force contours for 

the test run that had the best CD ML prediction. The top image shows the ground truth 

result, the middle image shows the ML prediction, and the bottom image shows their 

difference. The CD error for this design point is 0.18%, indicating very good 

agreement. Qualitatively, the surface X-Force contour predictions correlate well with 

the ground truth. There are some minor discrepancies seen between the ground truth 

and ML prediction. These differences are primarily present at regions of high 

curvature, such as the front bumper, mirrors, and wheels. 
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Figure 4: Surface X-Force for Run 18. This is the best prediction among all of the 

test points. top: Ground truth, middle: ML prediction, bottom: difference 

 

Figure 5 shows a comparison of the surface X-force contours for the test run that had 

the worst CD ML prediction. Even here, the ML prediction is in quite good agreement. 

The CD error for this design point is 1.00%. The discrepancies between ground truth 

and ML prediction are in similar regions as the “best” run. 
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Figure 5: Surface X-Force for Run 42. This is the worst prediction among all of the 

test points. top: Ground truth, middle: ML prediction, bottom: difference 

 

The overall performance of the ML model is shown in Figure 6. Here, the overall CD 

derived from the predicted X-component of surface force contours is plotted against 

the CD computed from the ground truth data. A perfect prediction would result in all 

of the data points falling on the 45-degree line. The mean error for the entire dataset 

(training points included) is 0.37% and the mean error for the test points only is 0.59%. 

As shown in Figure 6, all of the test points land on or within the 1% error bars.  
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Figure 6: ML predictions (Pred) vs. ground truth (Actual) for overall vehicle drag 

(CD) in counts. 1% error bars 

 

It is also important to consider the ranking of designs based on an important metric 

(CD in this case). This ensures that the neural network is able to predict trends 

accurately, which is key during the vehicle design phase. Figure 7 shows a ranking of 

the CD for all of the test datasets, ordered from lowest to highest. Here, the ranking 

remains consistent between ground truth result and ML prediction for all of the test 

points. This indicates that the trained model can predict trends accurately, even 

between closely ranked designs like test points 2, 3, and 4. 
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Figure 7: Overall vehicle drag for test runs. Ranked in ascending order based on the 

ground truth result. 

 

4 Conclusion 

Through this study, we have shown the ability for transformer-based neural networks 

to successfully create surrogate models from high-fidelity LBM CFD simulations. 

When applied to concept aerodynamics simulations, the key performance indicators 

of overall drag and surface X-Force contours were predicted by the neural network 

with a high level of accuracy. Specifically, in this study we utilized a 50-simulation 

dataset with a 90-10 training-test split, resulting in 45 training points and 5 test points. 

Training the model on the 3D contours of surface X-force resulted in an integrated 

drag force mean error of 0.59% for the test points. Moreover, the ranking of the 

different vehicle designs was accurately predicted by the ML model, ensuring that the 

methodology presented in this paper offers reliable design direction. 

The 3D contour predictions are made in a matter of minutes, instead of the hours 

required to simulate high-fidelity CFD, providing almost instantaneous design 

guidance based on vehicle drag performance. This approach will enable designers to 

explore the aerodynamic impact on a wider variety of vehicle shapes in the early 

stages of the design process. This was previously not possible with traditional CFD 

simulation techniques. 

Moving forward, the next steps are to evaluate the impact of expanding the training 

set, which would potentially improve the error even further. We also plan on applying 

this technique to other vehicles to ensure robustness. Finally, we would like to explore 

applying this history-based neural network technique to other CFD application areas 

such as acoustics and thermal applications. 
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