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Abstract: The vehicle market is evolving rapidly. New players are
entering the market, many variants of a vehicle are investigated prior to
freezing the design, and more. In this context, vehicle aerodynamics is
ever more crucial. It directly impacts the vehicle range and plays a major
role in meeting regulation targets. Vehicle manufacturers must also keep
in mind the need for a shorter time-to-market, where one must design
faster and not permit late-stage redesign. Therefore, faster and earlier
assessment of vehicle aerodynamics is imperative. Computational Fluid
Dynamics (CFD) has opened the door to virtual aerodynamic testing,
allowing manufacturers to test their vehicle shapes before developing a
costly and time-intensive prototype that then needs to be experimented on
using a wind tunnel. While high-fidelity CFD, such as the PowerFLOW®
software from Dassault Systémes, will remain an integral part of the
aerodynamic development process of major OEMs, the growth of
machine learning (ML) and continual improvement of its algorithms has
opened doors to speed-up computational aerodynamics, allowing
automotive manufacturers to get feedback on their vehicle design in a
matter of minutes. The current work illustrates how aerodynamic data
obtained using the Lattice Boltzmann Method with PowerFLOW®
combined with transformer-based ML can enable car manufacturers to
obtain clean 3D contour plots of the vehicle’s surface X-force (or any
other simulated quantity) distribution and the associated integrated
vehicle drag force within several minutes on a single GPU (after training
of the ML model). This represents a significant reduction in
computational cost and time.
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1 Introduction

The ground vehicle market continues to shift its focus to more energy-efficient
designs. As a result, aerodynamic performance of the vehicle is more critical than ever
in achieving range and regulatory goals. In order for a vehicle platform to reach its
aerodynamic performance targets, vehicle manufacturers must evaluate more designs
virtually. In order to meet time-to-market deadlines, there is a need to evaluate more
designs earlier in the design phase (such as the concept design phase). This is
sometimes referred to as “left-shifting” of simulation within the design cycle.

Historically, high-fidelity Computational Fluid Dynamics (CFD) tools using the
Lattice Boltzmann Method (LBM) such as the PowerFLOW?® software from Dassault
Systemes have been used to virtually evaluate vehicle aerodynamics. This will remain
an integral tool in both early and late stages of the design process. In early stages of
the design process, high-fidelity CFD will be used to generate datasets with which to
train machine learning (ML) models. In later stages of the design process where the
highest level of simulation accuracy is required, high-fidelity CFD will continue to be
used to verify final designs and validate physical tests. With the growth of machine
learning surrogate models, it is possible to evaluate the aerodynamics of a vehicle
virtually in a matter of minutes [1]. This will accelerate the aforementioned “left-
shifting” of simulation within the design cycle by allowing design studios to quickly
and easily evaluate the aerodynamic performance. This will ultimately allow vehicle
OEM s to evaluate significantly more designs than they would have using traditional
CFD methods, leading to more innovative and efficient vehicles.

Vehicle OEMs have been using CFD to predict their vehicle aerodynamics
performance at different stages within the design process for decades. As a result, they
have acquired a large database of simulation results. These existing datasets can be
leveraged as a promising starting point for training ML models. Integrating new high
fidelity simulation datasets into these trained models will further enhance their
prediction capabilities.
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There has been a surge of effort in scientific machine learning for CFD in recent years
covering most aspects of CFD with varying degrees of success [2] [3] [4]. Early work
focused on the development of novel RANS turbulence model closures with more
recent extensions being developed for LES closures [5] [6] [7]. A large amount of
effort has centered on physics-informed neural networks (PINNSs) [8] [9] [10] as a way
of solving conservation equations using neural networks. PINNs have some appealing
qualities including straightforward blending of data with conservations laws, being
fully differentiable, easy adaptation to complex geometries, and the ability to easily
incorporate a variety of boundary conditions. In spite of these apparent advantages,
PINNs are not competitive with traditional solvers and remain an active area of
research. Machine learning algorithms have also been developed to discover new
discretization strategies [11], accelerate traditional solvers [12], improve mesh
generation [13] [14], discover equations from data [15], generate super-resolved flow
fields from under-resolved data [16] [17] [18] [19], and most relevant to this
manuscript, develop surrogate models [20] [21] [22] [23] [24] [25]. The majority of
the work on ML has focused on data generated from Navier-Stokes simulations
including RANS, LES, and DNS datasets. However, some recent work has emerged
on fully-differentiable Lattice Boltzmann solvers [26], learning Lattice Boltzmann
collision operators [27], and learning collision operators for the Bolztmann equation
[28]. Regardless of the algorithm used, any scientific machine learning approach is
strongly influenced by the quality of the training data. The present work uses
PowerFLOW® CFD to generate state of the art training datasets for the development
of surrogate models.

In this study, we apply a transformer-based machine learning surrogate model [25]
[29] to the design of a vehicle external surface. The input to the neural network is a
set of PowerFLOW® LBM CFD simulations applied to a sedan vehicle with varying
design changes made to the A-surface. It is important to note that this ML
methodology uses history-based data as input, meaning that geometric parameters are
not required as input to the neural network. The reference vehicle model used in the
present study is the DrivAer model from TU Munich [30]. PowerFLOW® CFD was
previously validated on this particular vehicle model [31]. The trained neural network
was used to predict the X-component of the surface force contours. This result was
then used to calculate the overall vehicle drag coefficient (Cp) via integration over the
entire vehicle surface. Both the surface X-force contours and Cp were found to be in
excellent agreement with the PowerFLOW?® results, even for vehicle designs outside
of the training set. To the best of our knowledge, this is the first time an ML model
has been trained using data generated with the Lattice Boltzmann Method in the
context of vehicle aerodynamics.
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2 CFD Numerical Approach to Generate the Dataset

The design set used for training contained large changes to the vehicle A-surface,
including shape changes to the front bumper, windshield, and rear glass as well as ride
height and front wheel deflectors on/off. These shape changes were applied through a
mesh morphing technique. Figure 1 shows a subset of the designs that were used to
train the neural network. A total of 50 DrivAer designs were included in this study.

Figure 1: Subset of DrivAer designs used in study

All 50 of the DrivAer designs used in the present study were simulated using the
PowerFLOW® LBM CFD solver. A full numerical description along with information
regarding the Very Large Eddy Simulation (VLES) turbulence model can be found
within the following references [32] [33] [34] [35] [36] [37] [38] [39] .

Such a CFD approach has been extensively validated by comparison to physical test
from wind tunnel data [40] [41] [42] [43]. This gives confidence into the accuracy of
the database.

The results of these CFD simulations were used as the input dataset to the neural
network. The external aerodynamics simulation setup utilized an open-road scenario,
consisting of a large domain with a velocity inlet far upstream of the vehicle and a
pressure outlet far downstream. The walls and ceiling of the domain were modeled as
frictionless walls. The floor was modeled with a moving wall condition to match the
freestream velocity. Incompressible flow was assumed, with a freestream of U, =
140 kph and an ambient temperature of T = 20°C. The reference area used for drag
coefficient calculation was A = 2.156 m?. For added realism, the wheels of the
vehicle were encased in a local rotating reference frame in order to simulate the effects
of rotating wheel geometry with a sliding mesh technique.
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The fluid volume was setup using a variable resolution scheme. The finest fluid cell
size was 2.5mm, applied on regions containing highly unsteady flow and/or large
velocity gradients such as mirrors, a-pillars, and wheels. The fluid and surface grid
used for simulation was generated automatically by the PowerFLOW® discretizer.
This resulted in 97M elements in the fluid domain and 7M elements on the vehicle
surface.

All of the transient CFD simulations were run for 2 seconds of physical time. The end
of the initial transient was identified using the approach described in [44]. The time-
averaged drag force for all of the simulations converged within 1 count (0.001 Cp)
accuracy with a 95% confidence interval. Figure 2 shows an example of the drag time
history plot for one of the simulations. This 50-simulation set resulted in a broad range
of time-averaged overall Cp values, ranging from 0.247 to 0.308.
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Figure 2: Transient drag history plot for Run 1

Before inputting the CFD dataset into the neural network, some post-processing was
performed. The data on the surface of the vehicle directly from CFD contained around
3M points. This was too large for the neural network to run on a single-GPU card due
to memory limitations. Therefore, the per-simulation dataset size was reduced from
~3M points to 130k points via VVoronoi kernel spatial interpolation [45]. Doing so
introduced a mean error of 1.73% into the interpolated dataset. All of the results
forthcoming neglect this error and compare the interpolated data (ground truth) to the
ML prediction.
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3 Machine Learning Training and Predictions

A transformer-based machine learning technique [25] [29] was used to train on the
entire vehicle surface X-force contours from the PowerFLOW® simulations. A 90-10
training-test split of the 50-simulation dataset was used, resulting in 45 training points
and 5 blind test points. Figure 3 shows the training and test loss curves where we track
the evolution of the mean squared error for the training and test sets as a function of
epoch. The training had completed after 700 epochs.

1.D0F 400

1.00E-01

Mean Squared Error

100 1000

Epoch

—Train —Test

Figure 3: Training and test loss curves

The total vehicle drag force is calculated by integrating over the vehicle surface the
X-component of the force per unit area surface predictions from the machine learning
model. Analyzing both of these metrics is key to evaluating the accuracy of the model.
Figure 4 shows a comparison of the X-component of the surface force contours for
the test run that had the best Co ML prediction. The top image shows the ground truth
result, the middle image shows the ML prediction, and the bottom image shows their
difference. The Cp error for this design point is 0.18%, indicating very good
agreement. Qualitatively, the surface X-Force contour predictions correlate well with
the ground truth. There are some minor discrepancies seen between the ground truth
and ML prediction. These differences are primarily present at regions of high
curvature, such as the front bumper, mirrors, and wheels.
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Figure 4: Surface X-Force for Run 18. This is the best prediction among all of the
test points. top: Ground truth, middle: ML prediction, bottom: difference

Figure 5 shows a comparison of the surface X-force contours for the test run that had
the worst Cp ML prediction. Even here, the ML prediction is in quite good agreement.
The Cp error for this design point is 1.00%. The discrepancies between ground truth
and ML prediction are in similar regions as the “best” run.
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Figure 5: Surface X-Force for Run 42. This is the worst prediction among all of the
test points. top: Ground truth, middle: ML prediction, bottom: difference

The overall performance of the ML model is shown in Figure 6. Here, the overall Cp
derived from the predicted X-component of surface force contours is plotted against
the Cp computed from the ground truth data. A perfect prediction would result in all
of the data points falling on the 45-degree line. The mean error for the entire dataset
(training points included) is 0.37% and the mean error for the test points only is 0.59%.
As shown in Figure 6, all of the test points land on or within the 1% error bars.
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Figure 6: ML predictions (Pred) vs. ground truth (Actual) for overall vehicle drag
(Cp) in counts. 1% error bars

It is also important to consider the ranking of designs based on an important metric
(Cp in this case). This ensures that the neural network is able to predict trends
accurately, which is key during the vehicle design phase. Figure 7 shows a ranking of
the Cp for all of the test datasets, ordered from lowest to highest. Here, the ranking
remains consistent between ground truth result and ML prediction for all of the test
points. This indicates that the trained model can predict trends accurately, even
between closely ranked designs like test points 2, 3, and 4.
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Figure 7: Overall vehicle drag for test runs. Ranked in ascending order based on the
ground truth result.

4 Conclusion

Through this study, we have shown the ability for transformer-based neural networks
to successfully create surrogate models from high-fidelity LBM CFD simulations.
When applied to concept aerodynamics simulations, the key performance indicators
of overall drag and surface X-Force contours were predicted by the neural network
with a high level of accuracy. Specifically, in this study we utilized a 50-simulation
dataset with a 90-10 training-test split, resulting in 45 training points and 5 test points.
Training the model on the 3D contours of surface X-force resulted in an integrated
drag force mean error of 0.59% for the test points. Moreover, the ranking of the
different vehicle designs was accurately predicted by the ML model, ensuring that the
methodology presented in this paper offers reliable design direction.

The 3D contour predictions are made in a matter of minutes, instead of the hours
required to simulate high-fidelity CFD, providing almost instantaneous design
guidance based on vehicle drag performance. This approach will enable designers to
explore the aerodynamic impact on a wider variety of vehicle shapes in the early
stages of the design process. This was previously not possible with traditional CFD
simulation techniques.

Moving forward, the next steps are to evaluate the impact of expanding the training
set, which would potentially improve the error even further. We also plan on applying
this technique to other vehicles to ensure robustness. Finally, we would like to explore
applying this history-based neural network technique to other CFD application areas
such as acoustics and thermal applications.
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