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Abstract: This work presents a systematic approach to identify the
thermal behavior of arbitrary automotive component systems. The
proposed methodology leverages experimental temperature data and prior
knowledge from Computational Fluid Dynamics (CFD) simulations to
achieve a consistent system identification. The key aspects of the
approach include thermal behavior identification through minimizing the
least-squared error between the predicted thermal lumped parameter
model and the experimentally measured temperature data, ensuring a
robust and accurate representation of the system's thermal characteristics.
The identified system model is then utilized to generate transient system
responses for defined use-cases, enabling a comprehensive understanding
of the thermal behavior under various operating conditions. The
identification algorithm is based on the least-square programming
algorithm from SciPy, providing a robust and efficient computational
framework. Ensuring the reliability and durability of automotive
components is crucial, as they must withstand the wide range of
temperatures encountered during operation. To this end, the temperature-
critical components are experimentally tested and simulated using CFD.
The proposed methodology offers the capability to understand thermal
interactions in experimental data and to generate transient responses based
on stationary CFD simulations. Additionally, this work lays the
groundwork for predicting temperatures in future vehicles with physics-
informed neural networks. The method is tested with experimental
temperature data and a numerical model of the component space of one
control unit in the A-pillar of BMW's current 7 Series.
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1 Introduction

The thermal operating safety (TOS) of automotive vehicles is becoming increasingly
challenging due to the rising complexity of the products. TOS focuses on ensuring
that all components can withstand the thermal loads they encounter throughout their
lifespan [FrER23]. Historically, the primary emphasis of TOS has been on
components associated with or near combustion engines, such as engine rubber
mounts [FrRE24]. The combination of extreme weather conditions, limited
component space, cost pressures, and rising computational demands has added
additional components to the scope of TOS, such as electronic control units (ECUS).
This has compelled the automotive industry to take the lead in investing in thermal
management for electronic devices [DhKA23].

The primary objective of TOS is to evaluate all critical components and implement
cooling measures when necessary. To assess TOS, two main data sources are utilized:
experimental testing and simulation. At BMW the experimental testing is conducted
at the environmental test center in Munich [Bmwa25]. While experimental testing
provides accurate and transient temperature data, it is both time-consuming and costly.
It requires expensive prototypes and wind tunnel capacity, and testing must continue
until a stationary state is reached. On the other hand, the capabilities of computational
fluid dynamics (CFD) simulations have significantly improved in recent years,
allowing for the assessment of TOS issues, such as heat transfer in exhaust systems
[AhRF22, Enril5]. CFD simulations enable the evaluation of a wide range of
boundary conditions and various TOS measures in a relatively short time frame. To
determine the reliability of a component, it is essential to consider its cumulative
thermal load over its lifetime, as components can experience fatigue not only from
exceeding certain temperature thresholds [Ellel7]. Consequently, TOS employs
transient use cases to capture the complete temperature bandwidth. This approach has
led to numerous publications on transient CFD simulations [Disc16, Gheb13].
However, for the TOS use-cases at BMW the experience shows, that transient CFD
simulations are 4 to 10 times more expensive than stationary simulations.

To leverage the strengths of both methods, this paper proposes a combined approach
that integrates the transient behavior derived from experimental data with the rapid
calculations enabled by CFD simulations. Specifically, a zero-dimensional physical
representation of thermal systems, known as the Lumped Parameter Thermal Network
(LPTN), is utilized [MeRT91]. The parameters of the LPTN can be estimated with a
minimization algorithm, allowing for the calculation of transient behavior [KeRE25].
In this study, the methodology is demonstrated using an E/E component from the G70
BMW, referred to as ‘IPBasis.” The paper begins by explaining the mathematical
modeling of the LPTN for this component space. Next, the transient behavior,
represented by heat capacities, is fitted using multiple experimental data sets. The heat
transfer parameters are then derived from the corresponding stationary CFD
simulations. Finally, the combined LPTN is constructed using the fitted parameters,
and the transient temperature curve is generated.
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2 Mathematical Framework

To demonstrate the combined approach, first, the theory of the lumped parameter
thermal network must be shortly introduced. A more detailed explanation is provided
in [KeRE25]. First, the LPTN is introduced for the component space of the IPBasis,
and the fundamental equations are derived. Secondly, the state-space approach to
calculate the transient response of the LPTN is explained. Lastly, the minimization
algorithm to derive the parameters of the LPTN from given data is tackled.

2.1 Modeling of Lumped Parameter Thermal Networks (LPTN)

Lumped parameter thermal networks are based on an energy formulation of lumped
masses. Hence, this approach assumes that within these masses a homogeneous
temperature is present. The energy approach results in a 0D formulation as there is no
dependency on place. Two further simplifications are made in the current
implementation of the LPTN. On the one hand, it is based on constants for heat
capacities and heat transfer coefficients. Hence, temperature dependent effects like
change of convection are averaged. On the other hand, radiation effects are not
included, which simplifies the equations to a linear system.

In figure 1 the LPTN for the component space of the IPBasis is displayed. It consists
of two bodies, the chassis and the IPBasis. The two bodies are connected by
conduction. The chassis has a convection term to the outside temperature Tey. The
IPBasis is connected to the interior by convection which has the temperature T;,;. The
system is heated by the waste heat of the IPBasis Q3'3st®,

Q'waste
2
Chassis (1) . cond IPBasis (2)
Ty 1.2 T,
ml, Cl 21,2’ A1,2 7 61,2 mz' C2
I I
Qconv Qco_nv
1,ext 2,int
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7;7- Toxt Tine 777

Figure 1. Lumped Parameter Thermal Network.

The lumped parameter thermal network can now be mathematically formulated by
building the energy equilibrium of each body. The resulting two equations describing
the time-dependent behavior of the system are displayed in equation 2.1.
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2.2 Calculate Time-Response of LPTN

To calculate the time response of the LPTN, the state-space representation is
leveraged. The general formulation in matrix form is displayed in equation 2.2.

T=AT +B (2.2)

In the next step, the energy equations from 2.1 can be reformulated in the A and B
matrices. The resulting matrices are shown in the following equation:

11,2141,2 a1 extA1 ext 11,2141,2
Ty mi¢161 2 mycy m1¢161 2 [Tl]
T, 1241 MpA1z Ao intAzint|LT2
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Finally, the time response of the LPTN in form of the temperatures T(t) can be
calculated by using the Runge-Kutta method of fourth order. The method is a standard
solver for ordinary differential equations. Next to the matrices, the method needs
initial temperatures T, a simulation time step dt, and the time interval [ty, tepql- The
calculation can be written as follows:

T(t) = RK4(A,B,T,, dt, [ty, tenql) (2.4)

2.3 Calculate LPTN Parameters from Temperature Data

The idea is to find the parameters of the LPTN from only the temperature information.
There are two concerns with this approach. First, there are unlimited combinations of
the matrix A and B and therefore of the parameters that can show the same behavior
as the data. Hence, this is considered an ill-posed problem. To tackle this issue, the
parameters are fitted by a minimization algorithm to find the best fit. Secondly,
multiplied values like m,c, cannot be distinguished, hence they need a surrogate
parameter. These parameters are called identifiable, as they satisfy the necessary
condition to be distinguishable. The list of identifiable parameters is provided in
table 1.
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e R
Heat Capacity cm me, J/K
Convection Term c* aA W /K
Conduction Term c* W.WE W/K
Boundary Heat Flux 0 0 w

Table 1: Table of the identifiable parameters.

The set of identifiable parameters is denoted with 9 and can be seen in the following
equation:

9 =[C,,, Cy, €y, Q] (2.5)

With the identifiable parameters the LPTN model is simplified. This is exemplary
shown in equation 2.6 for the state-space representation.

_ (‘iZ _ Cfext C1 2 Cllext T
| e ® | o e |
TZ CLAZ — 2 _ CZ 1nt Qwaste + 2alntT l
Cﬁn Cz CZ Cm 1ntJ

Now, the minimization algorithm can be applied. The goal of the minimization is to
find the parameter set 9™ that minimizes the error between the data T°2% and the
calculated system response of the LPTN T™", The minimization term & is calculated
by the mean squared error:
e = (TData _ Tmin)2
(2.6)
With: T™" = RK4(A@™"), B(9™™), TD3R, dt, [to, tenal)

The calculated parameters provide a combination that fits the provided data the best.
However, these parameters are not necessarily the correct physical parameters of the
system. In the original paper it was proposed to fit over multiple files simultaneously
to get a global and uniform estimation. This way, the heat coefficients can be
compared between the files and the estimated heat capacities are representative of the
system response as they describe multiple files. This approach is conducted in the next
chapter for the experimental data.
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3 Experimental Data

The goal of this chapter is to retrieve the global heat capacities (C]™*, CJ**?) from

the experimental data (ED). Figure 2 displays an overview of the LPTN that is
minimized for this purpose. Every dataset contains the experimental temperatures
(TEP, TEP) and the boundary conditions (QWast€, T, Tint). The global parameters
(C™, c3*) are used for all files. The local parameters (C{';, Cfeye Coine) are fitted for
each file. The hypothesis is that the masses and materials remain the same, but the
heat transfer coefficients vary from file to file due to different boundary conditions.

ywaste . Boundary
2
B Data
. . Global Parameter
Chassis (1) IPBasis (2) e
TP K 61/1.2 7 TP

C(X CC(. ™\
Tlext 2,int Olltpllt:
7; T Tint 717' cvEP, CEP

ext
V.

Figure 2: LPTN System to identify the global parameters in form of the heat
capacities.

The data used for this approach is gained from windtunnel testing of the BMW G70
model. An overview of the test setup can be found in figure 3.

Sensor Chassis

Figure 3: Measurement of the experimental data. The upper left corner is an
exemplary picture of the G70 in the environmental testing center. In the lower left
corner, the sensor placement at the IPBasis is shown. On the right the sensor
placement at the chassis is displayed.
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In the upper left of figure 3 an exemplary picture of a G70 in the environmental test
center is displayed. The sensor placements inside of the IPBasis and at the surface of
the chassis are displayed in the other two graphics.

In this setup multiply tests were conducted like Stop&Go, Soakbox heating, and
Vmax. To get the most homogeneous data for the minimization, the initial heating
phase during constant boundary conditions were segmented from the rest of the test
periods. The representative LPTN for each file is build and the global heat capacities
as well as the local heat transfer coefficients is found by fitting to the experimental
data (TEP, TED). The time responses of the fitted LPTN after the minimization
(T, T are shown in figure 4. Three measurements are displayed exemplarily.

RMSE 1: 0.42 RMSE 1: 0.74 RMSE 1: 1.16

RMSE 2: 0.32 RMSE 2: 0.55 RMSE 2: 1.30
t] . | o~ "
! ‘AA I/" R | -:[;;nm
B T e
E // g i — —— TED
i 7T | T
; peyeiiogeyeiogeyeiiog gy ] " —_— ]:m

B & o 5 5 ¢ — — — — —

(a) [l (b)) (9
Time / s —
Figure 4: This graphic shows the global parameter estimation of three experimental

measurements. Subfigure (a), (b), and (c) each show a different experimental setup
with varying boundary conditions.

The fitting was able to capture the heating behavior of all files to an average root

mean squared error (RMSE) of 0.91K. The RMSE of the IPBasis is slightly higher
with 1.03°C compared to the chassis with 0.79°C, but the IPBasis is also generally
significantly warmer. The results indicate that the global heat capacities Cf"ED and

CJMP found are a good representative of the overall behavior of the system.

4 CFD Data

In the next step the heat transfer coefficients (C{5 " ~, Ciae» Caror ) are found from

the CFD-Simulation results. The CFD simulation is stationary, hence the temperatures

(TFPstat T CFDstYy are of scalar nature. The CFD simulation can calculate the
temperature results for arbitrary boundary conditions (Q33S', Toyr, Tint). As only

stationary information is available, the heat capacities (C]™*", CJ**P) are not relevant

for the calculation of the heat transfer coefficients. The overview of the LPTN for the
fitting of the CFD parameters is provided in figure 5.
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Figure 5: LPTN System to identify the conduction and convection parameter from
the stationary CFD-Simulation.

In figure 6 an overview of the CFD simulation is provided. The boundary conditions
are imprinted on the model by setting the external temperature at the bottom of the
cassis and by setting a Dirichlet boundary condition in the air space of the IPBasis.
The sensors are placed in the same locations as the experimental data, the IPBasis
sensor is in the inside of the ECU and the Chassis temperature is taken at the surface
of the chassis.

CFD A-Pillar Sensor Chassis Sensor IPBasis

Opening

TInterior

With Gradient

Figure 6: Overview of the CFD-Simulation.

As the temperature of the CFD is stationary, the state-space representation is
simplified, and the heat capacities can be neglected. This is shown in equation 4.1.

A,CFD a,CFD A,CFD CFD,stat
[0] _ [_C12 - Cl,ext C1,2 ITl l
- A,CFD A,CFD a,CFD CFD,stat
0 C1,2 _C1,2 - CZ,int T, (4.1)
Ca,CFDT '
l,ext “‘ext
Jwaste a,CFD
Qz + Cz,int Tint
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This system has three unknowns (C;5F°, ¢*SFP c&CFPy byt only two equations,

hence it is underdetermined. The minimization algorithm is capable of still finding a
set of parameters that will result in the correct stationary temperatures. However, to
find a unique solution, an additional condition is necessary. Fortunately, it is
comparably easy to retract additional information from a CFD simulation, like the
heat flux over a defined area. Here, the heat flux to the exterior QSEP is used as an
additional condition. With this information, the system is determined. In this paper we
reuse the minimization algorithm to calculate the parameters. The adjusted loss
function can be seen in equation 4.2.

. \2 . Lo N2
e = (T1CFD,stat _ Tmln) +(Qg)ftD _ Qg;l(ltn)
With: T™in = A(9™im)\ B(y™min) (4.2)

With: Q& = Cliaxe (Texe = T1™™)

1,ext

As this is a determined problem, the calculated parameters (C;5™>, CSEP, C5HCFP

are the correct description of the CFD simulation for the specific use-case. One issue
is the fact that the heat transfer coefficients are found from the stationary point, here
the hottest point of the use-case. Hence, the fitted parameters might overestimate the
actual parameters over the complete heating period. This concern is especially
relevant for the convection parameters, as they are usually temperature dependent.
One solution for this problem could be to include a time-dependent nonlinearity in the
convection parameters, for example linear interpolation from the initial state to the
stationary state. However, this is not further investigated in this work. For the present
use-case for the IPBasis the overestimation is assumed to be acceptable, as the overall
temperature delta is not over 100K.

5 Combined LPTN

5.1 Proof of Concept

In a first step, the overall concept needs to be demonstrated. For this, a pragmatical
approach is chosen which is displayed in figure 7. An artificial LPTN is designed, and
for four use-cases artificial data (TAP, TAP) is generated. The heat capacities are
found by minimizing three use-cases, one is shown exemplary in the (a). The fourth
use-case is the ground truth (T,7™uth, T.Truthy The heat transfer coefficients are
calculated from the stationary data and one heat flux condition. This is displayed in
(b). The parameters are then combined in a LPTN and simulated. The resulting
temperatures (T,combined combinedy can he seen in (c). The figure shows that the
combined temperatures exactly match the ground truth data. This proves that the
concept to fit the masses from different use-cases and calculate the transient response
of stationary data is viable.
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Figure 7: Proof of Concept for the correct calculation of the transient curves when
the parameters are calculated from the stationary point. Subfigure (a) is the heat
capacity minimization, (b) is the stationary CFD data, and (c) is the calculated LPTN
response from the combined parameters.

5.2 Calculating the transient response for the IPBasis

At this point, all the necessary parameters to calculate the transient response for the
CFD use-case are gained. The effective heat capacities (C]"°, CJ*P) from the
experimental data are fitted. The use-case specific heat transfer coefficients

(€15, Cei®, €54eP) from the CFD simulation are found for the LPTN. The goal

is to calculate the transient temperatures (T,.Combined pCombined) This can be
achieved by building the LPTN from the known parameters. The LPTN system is
displayed in figure 8.

Qéfvaste l B Boundary
B Output
Chassis (1) IPBasis (2) Experimental Parameter
T Combined LD TCombined I CFD Parameter
| |
CﬁéiiD CgiifD Output:
7}7' Text Tint 7}7' Tl(Iombined,TZCombined

Figure 8: LPTN System Overview for combining the parameters from experiment
and CFD-Simulation.

With this LPTN, the RK4 method can calculate the time response. The result is shown
in figure 9. This calculation is the result this work was aiming for. The assessment of
this result is not straightforward, as this combination of experimental and simulation
data has created a new kind of information, which has no ground truth. This result is
accurate if the masses and the heat capacities are identified correctly. The assessment
of the fitting accuracy is not scope of this work.
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Figure 9: Resulting transient curves based on the heat capacity information from the
experimental data and the stationary information from CFD-Simulation.

6 Conclusion

This paper achieved the calculation of a transient response for a stationary CFD
simulation based on transient experimental measurements. The results were achieved
for the component space of the IPBasis by leveraging a lumped parameter thermal
network approach. The global parameter fitting of the experimental data represents a
novel extension to the state-of-the-art minimization algorithm for estimating LPTN
parameters from temperature data, achieving a RMSE of 0.91K. This work
demonstrated the extraction of LPTN parameters from a CFD simulation. The
assembly of the transient curve from the stationary data and the heat capacity
information was demonstrated in section 5.1 as a proof of concept with 100%
accuracy.

It is anticipated that utilizing multiple experimental files simultaneously will enhance
the global fitting approach, allowing for more accurate determination of heat
capacities. However, this assumption requires further investigation, and establishing
a guideline for the optimal number of files necessary in an n-body LPTN would be
advantageous. Additionally, the fitting of parameters derived from the CFD
simulation is based on the stationary temperature point, specifically the highest
temperature observed. Consequently, when fitting temperature-dependent parameters,
such as the convection heat transfer coefficient, the estimated values are too high in
the transient phases calculated. This tendency leads to an underestimation of
temperatures, as too much energy is dissipated. To address this issue, introducing
nonlinearity into the system could provide a viable solution. Future work should focus
on developing and testing this approach using a transient CFD model.
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