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Abstract: This work presents a systematic approach to identify the 

thermal behavior of arbitrary automotive component systems. The 

proposed methodology leverages experimental temperature data and prior 

knowledge from Computational Fluid Dynamics (CFD) simulations to  

achieve a consistent system identification. The key aspects of the 

approach include thermal behavior identification through minimizing the 

least-squared error between the predicted thermal lumped parameter 

model and the experimentally measured temperature data, ensuring a 

robust and accurate representation of the system's thermal characteristics. 

The identified system model is then utilized to generate transient system 

responses for defined use-cases, enabling a comprehensive understanding 

of the thermal behavior under various operating conditions. The 

identification algorithm is based on the least-square programming 

algorithm from SciPy, providing a robust and efficient computational 

framework. Ensuring the reliability and durability of automotive 

components is crucial, as they must withstand the wide range of 

temperatures encountered during operation. To this end, the temperature-

critical components are experimentally tested and simulated using CFD. 

The proposed methodology offers the capability to understand thermal 

interactions in experimental data and to generate transient responses based 

on stationary CFD simulations. Additionally, this work lays the 

groundwork for predicting temperatures in future vehicles with physics-

informed neural networks. The method is tested with experimental 

temperature data and a numerical model of the component space of one 

control unit in the A-pillar of BMW's current 7 Series. 
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1 Introduction 

The thermal operating safety (TOS) of automotive vehicles is becoming increasingly 

challenging due to the rising complexity of the products. TOS focuses on ensuring 

that all components can withstand the thermal loads they encounter throughout their 

lifespan [FrER23]. Historically, the primary emphasis of TOS has been on 

components associated with or near combustion engines, such as engine rubber 

mounts [FrRE24]. The combination of extreme weather conditions, limited 

component space, cost pressures, and rising computational demands has added 

additional components to the scope of TOS, such as electronic control units (ECUs). 

This has compelled the automotive industry to take the lead in investing in thermal 

management for electronic devices [DhKA23]. 

The primary objective of TOS is to evaluate all critical components and implement 

cooling measures when necessary. To assess TOS, two main data sources are utilized: 

experimental testing and simulation. At BMW the experimental testing is conducted 

at the environmental test center in Munich [Bmwa25]. While experimental testing 

provides accurate and transient temperature data, it is both time-consuming and costly. 

It requires expensive prototypes and wind tunnel capacity, and testing must continue 

until a stationary state is reached. On the other hand, the capabilities of computational 

fluid dynamics (CFD) simulations have significantly improved in recent years, 

allowing for the assessment of TOS issues, such as heat transfer in exhaust systems 

[AhRF22, Enri15]. CFD simulations enable the evaluation of a wide range of 

boundary conditions and various TOS measures in a relatively short time frame. To 

determine the reliability of a component, it is essential to consider its cumulative 

thermal load over its lifetime, as components can experience fatigue not only from 

exceeding certain temperature thresholds [Elle17]. Consequently, TOS employs 

transient use cases to capture the complete temperature bandwidth. This approach has 

led to numerous publications on transient CFD simulations [Disc16, Gheb13]. 

However, for the TOS use-cases at BMW the experience shows, that transient CFD 

simulations are 4 to 10 times more expensive than stationary simulations. 

To leverage the strengths of both methods, this paper proposes a combined approach 

that integrates the transient behavior derived from experimental data with the rapid 

calculations enabled by CFD simulations. Specifically, a zero-dimensional physical 

representation of thermal systems, known as the Lumped Parameter Thermal Network 

(LPTN), is utilized [MeRT91]. The parameters of the LPTN can be estimated with a 

minimization algorithm, allowing for the calculation of transient behavior [KeRE25]. 

In this study, the methodology is demonstrated using an E/E component from the G70 

BMW, referred to as ‘IPBasis.’ The paper begins by explaining the mathematical 

modeling of the LPTN for this component space. Next, the transient behavior, 

represented by heat capacities, is fitted using multiple experimental data sets. The heat 

transfer parameters are then derived from the corresponding stationary CFD 

simulations. Finally, the combined LPTN is constructed using the fitted parameters, 

and the transient temperature curve is generated. 
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2 Mathematical Framework 

To demonstrate the combined approach, first, the theory of the lumped parameter 

thermal network must be shortly introduced. A more detailed explanation is provided 

in [KeRE25]. First, the LPTN is introduced for the component space of the IPBasis, 

and the fundamental equations are derived. Secondly, the state-space approach to 

calculate the transient response of the LPTN is explained. Lastly, the minimization 

algorithm to derive the parameters of the LPTN from given data is tackled.  

2.1 Modeling of Lumped Parameter Thermal Networks (LPTN) 

Lumped parameter thermal networks are based on an energy formulation of lumped 

masses. Hence, this approach assumes that within these masses a homogeneous 

temperature is present. The energy approach results in a 0D formulation as there is no 

dependency on place. Two further simplifications are made in the current 

implementation of the LPTN. On the one hand, it is based on constants for heat 

capacities and heat transfer coefficients. Hence, temperature dependent effects like 

change of convection are averaged. On the other hand, radiation effects are not 

included, which simplifies the equations to a linear system.  

In figure 1 the LPTN for the component space of the IPBasis is displayed. It consists 

of two bodies, the chassis and the IPBasis. The two bodies are connected by 

conduction. The chassis has a convection term to the outside temperature 𝑇ext . The 

IPBasis is connected to the interior by convection which has the temperature 𝑇int. The 

system is heated by the waste heat of the IPBasis 𝑄̇2
waste.  

 
Figure 1: Lumped Parameter Thermal Network. 

The lumped parameter thermal network can now be mathematically formulated by 

building the energy equilibrium of each body. The resulting two equations describing 

the time-dependent behavior of the system are displayed in equation 2.1. 

Chassis    IP asis    
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𝑚1𝑐1𝑇̇1 =
λ1,2𝐴1,2

δ1,2

(𝑇2 − 𝑇1) + α1,ext𝐴1,ext(𝑇ext − 𝑇1) 

(2.1) 

𝑚2𝑐2𝑇̇2 =
𝜆1,2𝐴1,2

𝛿1,2

(𝑇1 − 𝑇2) + 𝛼2,int𝐴2,int(𝑇ext − 𝑇2) + 𝑄̇2
waste 

2.2 Calculate Time-Response of LPTN 

To calculate the time response of the LPTN, the state-space representation is 

leveraged. The general formulation in matrix form is displayed in equation 2.2. 

𝑻̇ = 𝑨𝑻 + 𝑩 (2.2) 

In the next step, the energy equations from 2.1 can be reformulated in the A and B 

matrices. The resulting matrices are shown in the following equation: 

[
𝑇̇1

𝑇̇2

] =  

[
 
 
 
 −

𝜆1,2𝐴1,2

𝑚1𝑐1𝛿1,2
−

𝛼1,ext𝐴1,ext

𝑚1𝑐1

𝜆1,2𝐴1,2

𝑚1𝑐1𝛿1,2

𝜆1,2𝐴1,2

𝑚2𝑐2𝛿1,2
−

𝜆1,2𝐴1,2

𝑚2𝑐2𝛿1,2
−

𝛼2,int𝐴2,int

𝑚2𝑐2 ]
 
 
 
 

[
𝑇1

𝑇2
]   

+

[
 
 
 

𝛼1,ext𝐴1,ext

𝑚1𝑐1
𝑇0

1

𝑚2𝑐2

𝑄̇2
waste +

𝛼2,int𝐴2,int

𝑚2𝑐2

𝑇int]
 
 
 

 

(2.3) 

Finally, the time response of the LPTN in form of the temperatures 𝑇(𝑡) can be 

calculated by using the Runge-Kutta method of fourth order. The method is a standard 

solver for ordinary differential equations. Next to the matrices, the method needs 

initial temperatures 𝑻0, a simulation time step d𝑡, and the time interval [𝑡0, 𝑡end]. The 

calculation can be written as follows: 

𝑻(𝑡) = RK4(𝑨,𝑩, 𝑻0, d𝑡, [𝑡0, 𝑡end]) (2.4) 

2.3 Calculate LPTN Parameters from Temperature Data 

The idea is to find the parameters of the LPTN from only the temperature information. 

There are two concerns with this approach. First, there are unlimited combinations of 

the matrix A and B and therefore of the parameters that can show the same behavior 

as the data. Hence, this is considered an ill-posed problem. To tackle this issue, the 

parameters are fitted by a minimization algorithm to find the best fit. Secondly, 

multiplied values like 𝑚2𝑐2 cannot be distinguished, hence they need a surrogate 

parameter. These parameters are called identifiable, as they satisfy the necessary 

condition to be distinguishable. The list of identifiable parameters is provided in  

table 1. 
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Definition 
Identifiable  

Parameter 

Replaced  

Parameters 
Unit 

Heat Capacity 𝐶𝑚  𝑚𝑐𝑝 𝐽/𝐾 

Convection Term 𝐶𝛼  α𝐴 𝑊/𝐾 

Conduction Term 𝐶𝜆 λ𝐴 / δ 𝑊/𝐾 

Boundary Heat Flux 𝑄̇ 𝑄̇ 𝑊 

Table 1: Table of the identifiable parameters. 

The set of identifiable parameters is denoted with 𝝑 and can be seen in the following 

equation: 

𝝑 = [𝑪𝑚, 𝑪𝛼,  𝑪𝜆,  𝑸̇ ] (2.5) 

With the identifiable parameters the LPTN model is simplified. This is exemplary 

shown in equation 2.6 for the state-space representation. 

[
𝑇̇1

𝑇̇2

] =

[
 
 
 
 −

𝐶1,2
𝜆

𝐶1
𝑚 −

𝐶1,ext
𝛼

𝐶1
𝑚

𝐶1,2
𝜆

𝐶1
𝑚

𝐶1,2
𝜆

𝐶2
𝑚 −

𝐶1,2
𝜆

𝐶2
𝑚 −

𝐶2,int
𝛼

𝐶2
𝑚 ]

 
 
 
 

[
𝑇1

𝑇2
] +

[
 
 
 
 

𝐶1,ext
𝛼

𝐶1
𝑚 𝑇𝑒𝑥𝑡

1

𝐶2
𝑚 𝑄̇2

waste +
𝐶2,int

𝛼

𝐶2
𝑚 𝑇int

]
 
 
 
 

 (2.6) 

Now, the minimization algorithm can be applied. The goal of the minimization is to 

find the parameter set 𝝑min that minimizes the error between the data 𝑻Data and the 

calculated system response of the LPTN 𝑻min. The minimization term 𝜺 is calculated 

by the mean squared error: 

𝜺 = (𝑻Data − 𝑻min)
𝟐
 

With: 𝑻min  = RK4(𝑨(𝝑min),𝑩(𝝑min), 𝑻0
Data, d𝑡, [𝑡0, 𝑡end]) 

(2.6) 

The calculated parameters provide a combination that fits the provided data the best. 

However, these parameters are not necessarily the correct physical parameters of the 

system. In the original paper it was proposed to fit over multiple files simultaneously 

to get a global and uniform estimation. This way, the heat coefficients can be 

compared between the files and the estimated heat capacities are representative of the 

system response as they describe multiple files. This approach is conducted in the next 

chapter for the experimental data. 
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3 Experimental Data 

The goal of this chapter is to retrieve the global heat capacities (𝐶1
𝑚,𝐸𝐷, 𝐶2

𝑚,𝐸𝐷
) from 

the experimental data (ED). Figure 2 displays an overview of the LPTN that is 

minimized for this purpose. Every dataset contains the experimental temperatures 

(𝑇1
ED, 𝑇2

ED) and the boundary conditions (𝑄̇2
waste, 𝑇ext, 𝑇int). The global parameters 

(𝐶1
𝑚 , 𝐶2

𝑚) are used for all files. The local parameters (𝐶1,2
𝜆 , 𝐶1,ext

𝛼 , 𝐶2,int
𝛼 ) are fitted for 

each file. The hypothesis is that the masses and materials remain the same, but the 

heat transfer coefficients vary from file to file due to different boundary conditions. 

 
Figure 2: LPTN System to identify the global parameters in form of the heat 

capacities. 

The data used for this approach is gained from windtunnel testing of the BMW G70 

model. An overview of the test setup can be found in figure 3.  

 
Figure 3: Measurement of the experimental data. The upper left corner is an 

exemplary picture of the G70 in the environmental testing center. In the lower left 

corner, the sensor placement at the IPBasis is shown. On the right the sensor 

placement at the chassis is displayed. 

Chassis    IP asis    

Bo ndary

 ata

 lo al Parameter

 ocal Parameter

 utput  

,



Contribution: 2025 FKFS Conference on Vehicle Aerodynamics and Thermal 

Management  

15 – 16 October 2025 | Leinfelden-Echterdingen  

In the upper left of figure 3 an exemplary picture of a G70 in the environmental test 

center is displayed. The sensor placements inside of the IPBasis and at the surface of 

the chassis are displayed in the other two graphics. 

In this setup multiply tests were conducted like Stop&Go, Soakbox heating, and 

Vmax. To get the most homogeneous data for the minimization, the initial heating 

phase during constant boundary conditions were segmented from the rest of the test 

periods. The representative LPTN for each file is build and the global heat capacities 

as well as the local heat transfer coefficients is found by fitting to the experimental 

data (𝑻1
ED, 𝑻2

ED). The time responses of the fitted LPTN after the minimization  
(𝑻1

min, 𝑻2
min) are shown in figure 4. Three measurements are displayed exemplarily.  

 
Figure 4: This graphic shows the global parameter estimation of three experimental 

measurements. Subfigure (a), (b), and (c) each show a different experimental setup 

with varying boundary conditions. 

The fitting was able to capture the heating behavior of all files to an average root 

mean squared error (RMSE) of 0.91K. The RMSE of the IPBasis is slightly higher 

with 1.03°C compared to the chassis with 0.79°C, but the IPBasis is also generally 

significantly warmer. The results indicate that the global heat capacities 𝐶1
𝑚,ED

 and 

𝐶2
𝑚,ED

 found are a good representative of the overall behavior of the system. 

4 CFD Data 

In the next step the heat transfer coefficients (𝐶1,2
𝜆,CFD, 𝐶1,ext

𝛼,CFD, 𝐶2,int
𝛼,CFD

) are found from 

the CFD-Simulation results. The CFD simulation is stationary, hence the temperatures 

(𝑇1
CFD,stat

, 𝑇2
CFD,stat

) are of scalar nature. The CFD simulation can calculate the 

temperature results for arbitrary boundary conditions (𝑄̇2
waste, 𝑇ext, 𝑇int). As only 

stationary information is available, the heat capacities (𝐶1
𝑚,ED, 𝐶2

𝑚,ED
)  are not relevant 

for the calculation of the heat transfer coefficients. The overview of the LPTN for the 

fitting of the CFD parameters is provided in figure 5. 
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Figure 5: LPTN System to identify the conduction and convection parameter from 

the stationary CFD-Simulation. 

In figure 6 an overview of the CFD simulation is provided. The boundary conditions 

are imprinted on the model by setting the external temperature at the bottom of the 

cassis and by setting a Dirichlet boundary condition in the air space of the IPBasis. 

The sensors are placed in the same locations as the experimental data, the IPBasis 

sensor is in the inside of the ECU and the Chassis temperature is taken at the surface 

of the chassis. 

 
Figure 6: Overview of the CFD-Simulation. 

As the temperature of the CFD is stationary, the state-space representation is 

simplified, and the heat capacities can be neglected. This is shown in equation 4.1. 

[
0
0
] = [

−𝐶1,2
𝜆,CFD − 𝐶1,ext

𝛼,CFD 𝐶1,2
𝜆,CFD

𝐶1,2
𝜆,CFD −𝐶1,2

𝜆,CFD − 𝐶2,int
𝛼,CFD

] [
𝑇1

CFD,stat

𝑇2
CFD,stat]

+ [
𝐶1,ext

𝛼,CFD𝑇ext

𝑄̇2
waste + 𝐶2,int

𝛼,CFD𝑇int

] 

(4.1) 

Bo ndary of      se  ase
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This system has three unknowns (𝐶1,2
𝜆,CFD, 𝐶1,ext

𝛼,CFD, 𝐶2,int
𝛼,CFD

), but only two equations, 

hence it is underdetermined. The minimization algorithm is capable of still finding a 

set of parameters that will result in the correct stationary temperatures. However, to 

find a unique solution, an additional condition is necessary. Fortunately, it is 

comparably easy to retract additional information from a CFD simulation, like the 

heat flux over a defined area. Here, the heat flux to the exterior 𝑄̇ext
CFD is used as an 

additional condition. With this information, the system is determined. In this paper we 

reuse the minimization algorithm to calculate the parameters. The adjusted loss 

function can be seen in equation 4.2. 

𝜺 = (𝑇1
CFD,stat − 𝑻min)

𝟐
+(𝑄̇ext

CFD − 𝑄̇ext
min)

𝟐
 

With: 𝑻min  = 𝑨(𝝑min)\𝑩(𝝑min) 

With: 𝑄̇ext
min = 𝐶1,ext

𝛼,CFD(𝑇ext − 𝑇1
min) 

(4.2) 

As this is a determined problem, the calculated parameters (𝐶1,2
𝜆,CFD, 𝐶1,ext

𝛼,CFD, 𝐶2,int
𝛼,CFD

) 

are the correct description of the CFD simulation for the specific use-case. One issue 

is the fact that the heat transfer coefficients are found from the stationary point, here 

the hottest point of the use-case. Hence, the fitted parameters might overestimate the 

actual parameters over the complete heating period. This concern is especially 

relevant for the convection parameters, as they are usually temperature dependent. 

One solution for this problem could be to include a time-dependent nonlinearity in the 

convection parameters, for example linear interpolation from the initial state to the 

stationary state. However, this is not further investigated in this work. For the present 

use-case for the IPBasis the overestimation is assumed to be acceptable, as the overall 

temperature delta is not over 100K. 

5 Combined LPTN 

5.1 Proof of Concept 

In a first step, the overall concept needs to be demonstrated. For this, a pragmatical 

approach is chosen which is displayed in figure 7. An artificial LPTN is designed, and 

for four use-cases artificial data (𝑇1
AD, 𝑇2

AD) is generated. The heat capacities are 

found by minimizing three use-cases, one is shown exemplary in the (a). The fourth 

use-case is the ground truth (𝑇1
Truth, 𝑇2

Truth). The heat transfer coefficients are 

calculated from the stationary data and one heat flux condition. This is displayed in 

(b). The parameters are then combined in a LPTN and simulated. The resulting 

temperatures (𝑇1
combined, 𝑇2

combined) can be seen in (c). The figure shows that the 

combined temperatures exactly match the ground truth data. This proves that the 

concept to fit the masses from different use-cases and calculate the transient response 

of stationary data is viable. 
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Figure 7: Proof of Concept for the correct calculation of the transient curves when 

the parameters are calculated from the stationary point. Subfigure (a) is the heat 

capacity minimization, (b) is the stationary CFD data, and (c) is the calculated LPTN 

response from the combined parameters. 

5.2 Calculating the transient response for the IPBasis 

At this point, all the necessary parameters to calculate the transient response for the 

CFD use-case are gained. The effective heat capacities (𝐶1
𝑚,ED, 𝐶2

𝑚,ED
) from the 

experimental data are fitted. The use-case specific heat transfer coefficients 

(𝐶1,2
𝜆,CFD, 𝐶1,ext

𝛼,CFD, 𝐶2,int
𝛼,CFD

) from the CFD simulation are found for the LPTN. The goal 

is to calculate the transient temperatures (𝑇1
Combined, 𝑇2

Combined). This can be 

achieved by building the LPTN from the known parameters. The LPTN system is 

displayed in figure 8. 

 
Figure 8: LPTN System Overview for combining the parameters from experiment 

and CFD-Simulation. 

With this LPTN, the RK4 method can calculate the time response. The result is shown 

in figure 9. This calculation is the result this work was aiming for. The assessment of 

this result is not straightforward, as this combination of experimental and simulation 

data has created a new kind of information, which has no ground truth. This result is 

accurate if the masses and the heat capacities are identified correctly. The assessment 

of the fitting accuracy is not scope of this work. 

Bo ndary

 utput

 xperimental Parameter

    Parameter

 utput  
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Figure 9: Resulting transient curves based on the heat capacity information from the 

experimental data and the stationary information from CFD-Simulation. 

6 Conclusion 

This paper achieved the calculation of a transient response for a stationary CFD 

simulation based on transient experimental measurements. The results were achieved 

for the component space of the IPBasis by leveraging a lumped parameter thermal 

network approach. The global parameter fitting of the experimental data represents a 

novel extension to the state-of-the-art minimization algorithm for estimating LPTN 

parameters from temperature data, achieving a RMSE of 0.91K. This work 

demonstrated the extraction of LPTN parameters from a CFD simulation. The 

assembly of the transient curve from the stationary data and the heat capacity 

information was demonstrated in section 5.1 as a proof of concept with 100% 

accuracy. 

It is anticipated that utilizing multiple experimental files simultaneously will enhance 

the global fitting approach, allowing for more accurate determination of heat 

capacities. However, this assumption requires further investigation, and establishing 

a guideline for the optimal number of files necessary in an n-body LPTN would be 

advantageous. Additionally, the fitting of parameters derived from the CFD 

simulation is based on the stationary temperature point, specifically the highest 

temperature observed. Consequently, when fitting temperature-dependent parameters, 

such as the convection heat transfer coefficient, the estimated values are too high in 

the transient phases calculated. This tendency leads to an underestimation of 

temperatures, as too much energy is dissipated. To address this issue, introducing 

nonlinearity into the system could provide a viable solution. Future work should focus 

on developing and testing this approach using a transient CFD model. 
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