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Abstract: One of the ways to reduce the aerodynamic drag is by
improving the rear wake of the vehicle. To achieve this, accurate
measurements of flow velocity and pressure at the rear of the vehicle are
essential. In the Hyundai Aero-Acoustic Wind Tunnel (HAWT), a wake
measurement system with cobra probe arrays has been installed to
measure and analyze the vehicle wake. However, the cobra probe can only
properly detect the flows above 10m/s; thus, it cannot create an accurate
wake contour within the range of -10m/s to 40m/s. In this paper, a
Physics-Informed Neural Network (PINN) is applied to reconstruct the
complete vehicle wake from this sparse data. The PINN model fills in the
flow where velocities are below a certain threshold, allowing for a precise
calculation of micro drag, a quantitative method for vehicle wake analysis.
The generic aerodynamic model DrivAer, simulated via CFD, is used to
validate the predictive accuracy of the PINN. As a result, the difference
in aerodynamic drag coefficient between the ground truth and the PINN
prediction is under 1 count (ACp < 0.001). Furthermore, the validated
model was successfully applied to live wind tunnel data from the Hyundai
IONIQ 5, enabling a quantitative diagnosis that guided a significant drag
reduction. The application of PINN is expected to establish a more precise
and practical technique for vehicle wake analysis.
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1 Introduction

A detailed understanding of the flow field around a vehicle, which is shaped by its
geometry and aerodynamic devices, is crucial for reducing aerodynamic drag. The
Hyundai Aero-acoustic Wind Tunnel (HAWT) is equipped with a wake measurement
system that employs Cobra Probes on an automated traversing system [1-2]. This
setup allows for the real-time visualization and analysis of velocity and pressure fields
in the vehicle’s wake. However, a significant limitation of Cobra Probes, stemming
from their structural design (see Section 2.1), is their inability to accurately measure
reverse flow. This deficiency introduces distortions in the calculation of the Micro
drag (see Section 2.2), a key metric for aerodynamic analysis.

Previous studies have attempted to overcome such data distortion issues arising from
instrumentation limits. For instance, J.Jeong et al. applied a Deep Neural Network
(DNN) to reconstruct missing data in the temperature field of a flat plate [3]. This
work, however, was limited to thermal conduction, a phenomenon significantly less
complex and more linear than a turbulent flow field. In another study, D. Kim et al.
used an Adaptive Neuro Fuzzy Inference System(ANFIS) to predict the unmeasurable
areas in the wake of a side mirror [4]. While successful, the study did not provide a
clear rationale for how the ANFIS model learned the underlying physics of the flow.

To address these gaps, this paper introduces Physics-Informed Neural Networks
(PINNSs) to predict the flow data within the measurable regions of the vehicle wake
[5]. By integrating the governing physical equations directly into its loss function,
PINNs can learn the flow phenomena in a physically consistent manner. To validate
our approach, we evaluate the prediction accuracy of the PINNs using CFD simulation
data and benchmark its performance against a standard physics-uninformed neural
network. Finally, we employ the Micro drag technique to assess the PINN’s predictive
accuracy and to perform a quantitative analysis of the complete flow field that results
from augmenting the experimental data with the PINN’s predictions.

2 Backgrounds

2.1 Cobra probe

The Cobra probe is an instrument designed for flow field measurement. Its operating
principle, illustrated in Fig.1, involves measuring pressures at multiple holes on the
probe head and then using the pressure differences to calculate the flow direction and
three-dimensional velocity components. At HAWT, a 4-hole Fast Response
Aerodynamic Probe (FRAP) from Vectoflow GmbH (Germany) is employed. This
probe offers high-fidelity data acquisition, capturing pressure and velocity
components in real-time at frequencies up to 2kHz.
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Despite its capabilities, the Cobra probe has notable limitations. First, as an intrusive
instrument (Fig.1), it inevitably disturbs the local flow field it is intended to measure.
Second, its four-hole design restricts its effective measurement range to an acceptance

angle of £45 degrees from its central axis. Finally, being a pressure-based sensor, its
accuracy significantly degrades at low velocities, particularly below ~10m/s.

Cobra Probe
Air flow —j

—
—
—p

Figure 1: Multi-hole Cobra probe
(Source : vectoflow.de)

2.2 Micro Drag

Micro drag is an analytical technique, originally introduced by Cogotti, for
diagnosing the sources of drag in a vehicle’s wake [6]. The method is fundamentally
based on the Reynolds Transport Theorem and works by calculating the momentum
deficit in the flow as it traverses a specified control volume (see Eq.1)

Cp-Ag= [1—Cprods — | (1 —i)z ds + f((i)2 + (i)z) ds (1)

Uco

Where Cp is the drag coefficient acting on the vehicle, Ax is the frontal projected
area of the vehicle, and Cp o 1s the total pressure coefficient calculated from the flow
passing through the control surface. u. represents the freestream velocity in the wind

tunnel, which corresponds to the driving speed in on-road conditions. The terms u,v,
and w are the velocity components in the X,y, and z directions at the measurement
points, respectively, and s denotes the control surface.
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A primary output of this technique is a Drag map (Fig.2), which provides a visual
and quantitative breakdown of how different areas in the wake contribute to the total
aerodynamic drag. This allows engineers to pinpoint which flow structures are most
responsible for increasing drag. The reliability of this powerful diagnostic tool,
however, is critically dependent on the precise measurement of reverse flow regions.
This exposes a key limitation in the current experimental setup at HAWT, where the
Cobra probe’s inability to measure reverse flow undermines the accuracy of the Micro
drag analysis.
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Figure 2: DrivAer Estate Model & Drag map

2.3 Physics Informed Neural Networks

Physics-Informed Neural Networks (PINNSs), introduced by Raissi et al., represent a
paradigm shift from traditional data-driven models [5]. While conventional neural
networks learn exclusively from data, often ignoring the underlying physics, PINNs
embed governing physical laws directly into the learning process. This is achieved by
formulating a loss function that penalizes predictions for violating these laws, which
not only reduces the reliance on large datasets but also accelerates model convergence.
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Figure 3: PINNs Architecture
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The PINNSs architecture, depicted in Fig.3, consists of two primary components. The
first is a standard neural network that learns from available data points (left side). The
second, and defining, component is the physics-informed part (right side), where the

governing equations of fluid dynamics—the Navier-Stokes and Continuity

equations—are formulated as a residual term in the loss function. This dual-objective

training effectively constrains the solution space, preventing the network from
producing physically implausible outcomes.

The model’s total loss function Limodel is therefore a composite of the data loss (Ldata)
and the physics loss (Lphysics), as formulated in Eq.2. A powerful feature of this
framework is that Ldaa and Lphysics need not be evaluated at the same spatial points.
This allows the network to make accurate predictions even in regions devoid of
measurement data by leveraging the physical laws learned from randomly sampled
collocation points throughout the domain, alongside sparse information from actual
sensor locations.

Lmodet = Laata + Lphysics (2)

Building on these capabilities, this study employs PINNs to address the measurement
limitations of the Cobra Probe. Specifically, we leverage 1) the enforcement of
physical laws and 2) the ability to predict in data-sparse regions to reconstruct the

low-velocity airflow (<10m/s) in the vehicle’s wake. This reconstructed flow field is
used to perform a quantitative acrodynamic analysis using the Micro drag technique.

3 Model Construction and Validation

This study validates the PINN’s predictive capabilities using a semi-synthetic dataset
derived from a high-fidelity CFD simulation of the DrivAer Estate model, a widely
recognized benchmark in automotive aerodynamics [7]. To mimic the constraints of
a real-world experiment, the complete CFD flow field was down-sampled to match
the spatial resolution of the HAWT’s wake measurement system. The resulting data,
which forms the basis for our model training and validation, is shown in Fig.4.

The dataset is defined on a yz cross-sectional plane measuring 2.6m in width and
1.45m in height, situated 0.5m downstream from the vehicle’s rear end. The data was
partitioned for training and validation as follows:
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® Training Data (for Lyaw): The data-driven loss component was trained on
points from the “measurable” region, defined as where the axial velocity u
> 10m/s. The inputs for the network were the spatial coordinates of these
points, while the corresponding labels were the ground-truth velocity
components (u,v,w) and pressure (p) from the CFD simulation.

® (Collocation Points (for Lpnysics): The physics-informed loss component was
enforced at collocation points sampled from the “unmeasurable” region (u
< 10m/s). The loss at these points was calculated based on the residuals of
the governing physical equations, which are detailed in the subsequent
section.

® Validation Data: To quantitatively assess the model’s accuracy in the target

region, a validation set was created using the data points where u < 10m/s.

The inputs were the coordinates of these points, and the labels were their
true velocity and pressure values from the CFD simulation, serving as the
ground truth.

Figure 5 visualizes the initial training data, showing the u, v, and w velocity fields

with the target prediction region (u £ 10m/s) masked out.

Grid for CFD Grid for Wake Measurement
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.
Vehicle Wake by CFD Resolution adjusted data

Figure 4. Down-sampling of CFD Wake results
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Figure 5. u,v,w velocity flow fields except unmeasurable region

3.1 Hyperparameter tuning

To optimize the model’s predictive performance a two-stage tuning process was
conducted: first on the neural network architecture, and second on the formulation of
the physics-informed loss, Lpnysics. Other fundamental hyperparameters were kept
constant as detailed in Table 1.

Table 1. Hyperparameter settings for PINN model

Hyperparameter Value
Activation function Tanh
Epochs 15,000
Batch size 5,000
Learning rate 1.0e-4

Network Architecture Optimization:

Optimizing the number of layers and neurons is essential for preventing common
training pitfalls like overfitting and convergence to poor local minima. For this stage,
we used a standard Lpnysics for formulation consisting of the coupled continuity
equation (CE) and Navier-Stokes equations (NSE). We evaluated three distinct
network architectures, comparing their performance based on the Mean Squared Error
(MSE) calculated on the validation data from the unmeasurable region. The results
are presented in Table.2

The architecture with 5 hidden layers with 50 neurons each achieved the best
performance, exhibiting the lowest MSE. The deepest model (10 layers, 100 neurons)
did not overfit within 15,000 epochs but seemed to get trapped in a local minimum.
In contrast, the simplest model (5 layers, 10 neurons) was likely too shallow, lacking
expressive capacity to accurately model the complex flow field, which resulted in a
higher MSE.
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Table 2. Results of Network architecture optimization

# of layers # of neurons MSE
5 10 0.27
5 50 0.16
10 100 0.36

Physics-Informed Loss (Lphysics) Formulation:

In conventional machine learning, the loss function is not considered a
hyperparameter. However, for PINNs, the selection of physical laws that constitute
Lphysics 18 a critical design choice that can significantly impact accuracy. The canonical
choice for fluid dynamics is the coupled NSE and CE. To potentially enhance the
physical consistency of the predictions, we investigated the effect of adding a third
equation: the Pressure Poisson Equation (PPE). The PPE, derived by taking the
divergence of the NSE, acts as a supplementary constraint that reinforces the
mathematical compatibility between the pressure and velocity fields. We therefore
constructed and compared several cases, each with a different combination of the three
governing equations (formulated in Eq.3) and evaluated their performance based on
the MSE in the unmeasurable region, as outlined in Table3.

(Navier-Stokes Equation) [8]
v
el = —a-va—7p+yvza

(Continuity Equation) [8]
e2 = Vu 3)

(Pressure Poisson Equation) [8]

— — vp 2=
e3 = V-(—u-Vu—?+uV u)

Fixing the network architecture to the optimal 5-layer, 50-neuron configuration, we
evaluated the performance of different Lpnysis formulations. This evaluation
demonstrated that the combination of the Pressure Poisson Equation (PPE) and the
Continuity Equation (CE) achieved the lowest Mean Squared Error (MSE). Notably,
applying the CE alone as a physical constraint was counterproductive, yielding an
even higher MSE than the physics-uninformed baseline model. This result
underscores a critical insight: the injudicious application of physical constraints in a
PINN can degrade, rather than improve, predictive performance.
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Table 3. Combinations of Governing equations

Governing Eqn # of layers # of neurons MSE
CE 5 50 0.24

NSE & CE 5 50 0.16
PPE & CE 5 50 0.12
None 5 50 0.23

Therefore, our final optimized model for this study utilizes a 5-layer, 50-neuron
architecture with a physics-informed loss term comprising the PPE and CE to ensure
the highest predictive accuracy.

3.2 Analysis of predicted results

While Mean Squared Error (MSE) is a standard metric for regression, it offers
limited physical insight into the accuracy of a predicted flow field. To provide a more
robust and domain-specific evaluation, we assess the PINN’s performance by
applying the Micro drag technique (Section 2.2) to the reconstructed wake. We then
compare the drag coefficient (Cp) calculated from the PINN’s output with the ground
truth Cp from CFD simulation. We define our success criterion as a discrepancy of
less than 0.001 (1 count), which would validate the model’s practical utility for
aerodynamic analysis.

Figure 6. visually confirms the high fidelity of the reconstruction, comparing the
PINN-predicted flow field in the u<10m/s zone with the ground truth. It is remarkable

that the model achieved this accuracy without any direct training on the ground truth
data within this unmeasurable region, relying solely on surrounding data and physical
constraints.

A compelling quantitative comparison is presented in Figure 7., which shows Drag
maps for three scenarios: the CFD ground truth, the PINN reconstruction, and the
incomplete data mimicking the experimental measurements. The map from the
incomplete data fails to capture the crucial drag recovery dynamics (the blue, Cp <0
region), leading to a significant overestimation of the total drag coefficient (Cp =
0.314) versus the ground truth (Cp = 0.294). Conversely, the PINN-reconstructed map
successfully reproduces the drag recovery region, resulting in a highly accurate drag

coefficient of 0.295—a deviation of just 1 count from the ground truth.
The excellent agreement, with the Cp difference falling well within our 1-count

threshold, confirms that the PINN-based reconstruction is not only accurate but also
robust enough for quantitative vehicle wake analysis.
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Figure 6. PINNs results, ground truth’s flow fields & velocity distribution
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Figure 7. Drag map visualization
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3.3 Case Study: Application to Real-World Wind Tunnel Measurements

Having validated our PINNs framework against high-fidelity CFD data, the next
critical step was to prove its efficacy on real, incomplete experimental measurements.
This section details a case study where the methodology was deployed during
development of the new IONIQ 5 (PE), using sparse data gathered directly from wind
tunnel test.

The primary engineering goal was to lower the vehicle’s drag coefficient (Cp) to
increase its All-Electric Range (AER). First, the original IONIQ 5 was evaluated in
the wind tunnel. Our PINN model was then applied to its sparse wake measurements
to reconstruct a complete flow field. The resulting drag map analysis (Fig8.) provided
a crucial insight that was otherwise unobtainable from the raw data: an unusually weak
drag recovery region. The quantitative assessment, enabled by our method, pinpointed
the roof spoiler (white box) as the primary culprit, responsible for a substantial 18%
of the total drag.

Armed with this direct, quantitative feedback from experimental data, engineers
redesigned the spoiler for the new IONIQ 5. The modified vehicle was re-tested in the
wind tunnel, and the PINN analysis was repeated. The new Drag map (Fig8.)
confirmed the success of the modification: the drag contribution from the redesigned
spoiler was dramatically reduced to approximately 3%. This case study showcases the
framework’s successful transition from a validation tool to a powerful diagnostic
instrument in an active vehicle development program.
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Figure 8. Drag map: IONIQ 5 (left), the new IONIQ 5 (right)
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4 Conclusion

This study successfully developed a Physics-Informed Neural Networks (PINNs)
framework capable of transforming incomplete, sparse wake measurements into
complete, actionable flow fields. We initially validated the model’s fundamental
accuracy using a semi-synthetic CFD dataset of the DrivAer Estate model, optimizing
it to a S-layer architecture with a PPE-CE physics loss that predicted the drag
coefficient to within 1 count (Cp 0.001).
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Crucially, this research takes the vital step from validation in a controlled, simulated
environment to successful application on real-world experimental data. To prove its
practical readiness, the framework was applied directly to sparse data from a wind
tunnel test of the new IONIQ 5. This PINN-driven analysis provided unprecedented
quantitative insights, identifying a suboptimal roof spoiler as a major contributor to
drag. The subsequent design improvements, guided by these findings, yielded a
substantial drag reduction. This successful application on genuine experimental data
validates our approach as a robust and impactful tool capable of bridging the gap
between incomplete measurements and actionable engineering insights in the
automotive development cycle. We anticipate that its capabilities can be further
extended across diverse vehicle platforms by leveraging techniques like transfer
learning.
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