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Abstract: One of the ways to reduce the aerodynamic drag is by 

improving the rear wake of the vehicle. To achieve this, accurate 

measurements of flow velocity and pressure at the rear of the vehicle are 

essential. In the Hyundai Aero-Acoustic Wind Tunnel (HAWT), a wake 

measurement system with cobra probe arrays has been installed to 

measure and analyze the vehicle wake. However, the cobra probe can only 

properly detect the flows above 10m/s; thus, it cannot create an accurate 

wake contour within the range of -10m/s to 40m/s. In this paper, a 

Physics-Informed Neural Network (PINN) is applied to reconstruct the 

complete vehicle wake from this sparse data. The PINN model fills in the 

flow where velocities are below a certain threshold, allowing for a precise 

calculation of micro drag, a quantitative method for vehicle wake analysis. 

The generic aerodynamic model DrivAer, simulated via CFD, is used to 

validate the predictive accuracy of the PINN. As a result, the difference 

in aerodynamic drag coefficient between the ground truth and the PINN 

prediction is under 1 count (∆CD < 0.001). Furthermore, the validated 

model was successfully applied to live wind tunnel data from the Hyundai 

IONIQ 5, enabling a quantitative diagnosis that guided a significant drag 

reduction. The application of PINN is expected to establish a more precise 

and practical technique for vehicle wake analysis. 
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1 Introduction 

A detailed understanding of the flow field around a vehicle, which is shaped by its 

geometry and aerodynamic devices, is crucial for reducing aerodynamic drag. The 

Hyundai Aero-acoustic Wind Tunnel (HAWT) is equipped with a wake measurement 

system that employs Cobra Probes on an automated traversing system [1-2]. This 

setup allows for the real-time visualization and analysis of velocity and pressure fields 

in the vehicle’s wake. However, a significant limitation of Cobra Probes, stemming 

from their structural design (see Section 2.1), is their inability to accurately measure 

reverse flow. This deficiency introduces distortions in the calculation of the Micro 

drag (see Section 2.2), a key metric for aerodynamic analysis. 

Previous studies have attempted to overcome such data distortion issues arising from 

instrumentation limits. For instance, J.Jeong et al. applied a Deep Neural Network 

(DNN) to reconstruct missing data in the temperature field of a flat plate [3]. This 

work, however, was limited to thermal conduction, a phenomenon significantly less 

complex and more linear than a turbulent flow field. In another study, D. Kim et al. 

used an Adaptive Neuro Fuzzy Inference System(ANFIS) to predict the unmeasurable 

areas in the wake of a side mirror [4]. While successful, the study did not provide a 

clear rationale for how the ANFIS model learned the underlying physics of the flow. 

To address these gaps, this paper introduces Physics-Informed Neural Networks 

(PINNs) to predict the flow data within the measurable regions of the vehicle wake 

[5]. By integrating the governing physical equations directly into its loss function, 

PINNs can learn the flow phenomena in a physically consistent manner. To validate 

our approach, we evaluate the prediction accuracy of the PINNs using CFD simulation 

data and benchmark its performance against a standard physics-uninformed neural 

network. Finally, we employ the Micro drag technique to assess the PINN’s predictive 

accuracy and to perform a quantitative analysis of the complete flow field that results 

from augmenting the experimental data with the PINN’s predictions. 

 

2 Backgrounds 

2.1 Cobra probe 

The Cobra probe is an instrument designed for flow field measurement. Its operating 

principle, illustrated in Fig.1, involves measuring pressures at multiple holes on the 

probe head and then using the pressure differences to calculate the flow direction and 

three-dimensional velocity components. At HAWT, a 4-hole Fast Response 

Aerodynamic Probe (FRAP) from Vectoflow GmbH (Germany) is employed. This 

probe offers high-fidelity data acquisition, capturing pressure and velocity 

components in real-time at frequencies up to 2kHz. 
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Despite its capabilities, the Cobra probe has notable limitations. First, as an intrusive 

instrument (Fig.1), it inevitably disturbs the local flow field it is intended to measure. 

Second, its four-hole design restricts its effective measurement range to an acceptance 

angle of ±45 degrees from its central axis. Finally, being a pressure-based sensor, its 

accuracy significantly degrades at low velocities, particularly below ~10m/s. 

 

 

 

Figure 1: Multi-hole Cobra probe 

(Source : vectoflow.de) 

 

 

2.2 Micro Drag 

Micro drag is an analytical technique, originally introduced by Cogotti, for 

diagnosing the sources of drag in a vehicle’s wake [6]. The method is fundamentally 

based on the Reynolds Transport Theorem and works by calculating the momentum 

deficit in the flow as it traverses a specified control volume (see Eq.1) 
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)
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)
2
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Where CD is the drag coefficient acting on the vehicle, Ax is the frontal projected 

area of the vehicle, and Cp,tot is the total pressure coefficient calculated from the flow 

passing through the control surface. u∞ represents the freestream velocity in the wind 

tunnel, which corresponds to the driving speed in on-road conditions. The terms u,v, 

and w are the velocity components in the x,y, and z directions at the measurement 

points, respectively, and s denotes the control surface. 
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A primary output of this technique is a Drag map (Fig.2), which provides a visual 

and quantitative breakdown of how different areas in the wake contribute to the total 

aerodynamic drag. This allows engineers to pinpoint which flow structures are most 

responsible for increasing drag. The reliability of this powerful diagnostic tool, 

however, is critically dependent on the precise measurement of reverse flow regions. 

This exposes a key limitation in the current experimental setup at HAWT, where the 

Cobra probe’s inability to measure reverse flow undermines the accuracy of the Micro 

drag analysis. 

 

    

Figure 2: DrivAer Estate Model & Drag map 

 

2.3 Physics Informed Neural Networks 

Physics-Informed Neural Networks (PINNs), introduced by Raissi et al., represent a 

paradigm shift from traditional data-driven models [5]. While conventional neural 

networks learn exclusively from data, often ignoring the underlying physics, PINNs 

embed governing physical laws directly into the learning process. This is achieved by 

formulating a loss function that penalizes predictions for violating these laws, which 

not only reduces the reliance on large datasets but also accelerates model convergence. 

 

 

Figure 3: PINNs Architecture 
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The PINNs architecture, depicted in Fig.3, consists of two primary components. The 

first is a standard neural network that learns from available data points (left side). The 

second, and defining, component is the physics-informed part (right side), where the 

governing equations of fluid dynamics─the Navier-Stokes and Continuity 

equations─are formulated as a residual term in the loss function. This dual-objective 

training effectively constrains the solution space, preventing the network from 

producing physically implausible outcomes. 

The model’s total loss function Lmodel is therefore a composite of the data loss (Ldata) 

and the physics loss (Lphysics), as formulated in Eq.2. A powerful feature of this 

framework is that Ldata and Lphysics need not be evaluated at the same spatial points. 

This allows the network to make accurate predictions even in regions devoid of 

measurement data by leveraging the physical laws learned from randomly sampled 

collocation points throughout the domain, alongside sparse information from actual 

sensor locations. 

 

𝐿𝑚𝑜𝑑𝑒𝑙 = 𝐿𝑑𝑎𝑡𝑎 + 𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠         (2) 

 

Building on these capabilities, this study employs PINNs to address the measurement 

limitations of the Cobra Probe. Specifically, we leverage 1) the enforcement of 

physical laws and 2) the ability to predict in data-sparse regions to reconstruct the 

low-velocity airflow (≤10m/s) in the vehicle’s wake. This reconstructed flow field is 

used to perform a quantitative aerodynamic analysis using the Micro drag technique. 

 

 

 

3 Model Construction and Validation 

This study validates the PINN’s predictive capabilities using a semi-synthetic dataset 

derived from a high-fidelity CFD simulation of the DrivAer Estate model, a widely 

recognized benchmark in automotive aerodynamics [7]. To mimic the constraints of 

a real-world experiment, the complete CFD flow field was down-sampled to match 

the spatial resolution of the HAWT’s wake measurement system. The resulting data, 

which forms the basis for our model training and validation, is shown in Fig.4. 

The dataset is defined on a yz cross-sectional plane measuring 2.6m in width and 

1.45m in height, situated 0.5m downstream from the vehicle’s rear end. The data was 

partitioned for training and validation as follows: 
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⚫ Training Data (for Ldata): The data-driven loss component was trained on 

points from the “measurable” region, defined as where the axial velocity u 

> 10m/s. The inputs for the network were the spatial coordinates of these 

points, while the corresponding labels were the ground-truth velocity 

components (u,v,w) and pressure (p) from the CFD simulation. 

⚫ Collocation Points (for Lphysics): The physics-informed loss component was 

enforced at collocation points sampled from the “unmeasurable” region (u 

≤ 10m/s). The loss at these points was calculated based on the residuals of 

the governing physical equations, which are detailed in the subsequent 

section. 

⚫ Validation Data: To quantitatively assess the model’s accuracy in the target 

region, a validation set was created using the data points where u ≤ 10m/s. 

The inputs were the coordinates of these points, and the labels were their 

true velocity and pressure values from the CFD simulation, serving as the 

ground truth. 

 

Figure 5 visualizes the initial training data, showing the u, v, and w velocity fields 

with the target prediction region (u ≤ 10m/s) masked out. 

 

 

 

Figure 4. Down-sampling of CFD Wake results 
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Figure 5. u,v,w velocity flow fields except unmeasurable region 

 

3.1 Hyperparameter tuning 

To optimize the model’s predictive performance a two-stage tuning process was 

conducted: first on the neural network architecture, and second on the formulation of 

the physics-informed loss, Lphysics. Other fundamental hyperparameters were kept 

constant as detailed in Table 1. 

 

Table 1. Hyperparameter settings for PINN model 

Hyperparameter Value 

Activation function Tanh 

Epochs 15,000 

Batch size 5,000 

Learning rate 1.0e-4 

 

 Network Architecture Optimization: 

Optimizing the number of layers and neurons is essential for preventing common 

training pitfalls like overfitting and convergence to poor local minima. For this stage, 

we used a standard Lphysics for formulation consisting of the coupled continuity 

equation (CE) and Navier-Stokes equations (NSE). We evaluated three distinct 

network architectures, comparing their performance based on the Mean Squared Error 

(MSE) calculated on the validation data from the unmeasurable region. The results 

are presented in Table.2 

The architecture with 5 hidden layers with 50 neurons each achieved the best 

performance, exhibiting the lowest MSE. The deepest model (10 layers, 100 neurons) 

did not overfit within 15,000 epochs but seemed to get trapped in a local minimum. 

In contrast, the simplest model (5 layers, 10 neurons) was likely too shallow, lacking 

expressive capacity to accurately model the complex flow field, which resulted in a 

higher MSE. 
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Table 2. Results of Network architecture optimization 

# of layers # of neurons MSE 

5 10 0.27 

5 50 0.16 

10 100 0.36 

 

 

Physics-Informed Loss (Lphysics) Formulation: 

In conventional machine learning, the loss function is not considered a 

hyperparameter. However, for PINNs, the selection of physical laws that constitute 

Lphysics is a critical design choice that can significantly impact accuracy. The canonical 

choice for fluid dynamics is the coupled NSE and CE. To potentially enhance the 

physical consistency of the predictions, we investigated the effect of adding a third 

equation: the Pressure Poisson Equation (PPE). The PPE, derived by taking the 

divergence of the NSE, acts as a supplementary constraint that reinforces the 

mathematical compatibility between the pressure and velocity fields. We therefore 

constructed and compared several cases, each with a different combination of the three 

governing equations (formulated in Eq.3) and evaluated their performance based on 

the MSE in the unmeasurable region, as outlined in Table3. 

 

(Navier-Stokes Equation) [8] 

𝑒1 =  −𝑢⃗ ∙ ∇𝑢⃗ −
∇𝑝

𝜌
+ 𝜇∇2𝑢⃗  

(Continuity Equation) [8] 

𝑒2 =  ∇𝑢                                                        (3) 

(Pressure Poisson Equation) [8] 

𝑒3 =  ∇ ∙ (−𝑢⃗ ∙ ∇𝑢⃗ −
∇𝑝

𝜌
+ 𝜇∇2𝑢⃗ ) 

 

Fixing the network architecture to the optimal 5-layer, 50-neuron configuration, we 

evaluated the performance of different Lphysics formulations. This evaluation 

demonstrated that the combination of the Pressure Poisson Equation (PPE) and the 

Continuity Equation (CE) achieved the lowest Mean Squared Error (MSE). Notably, 

applying the CE alone as a physical constraint was counterproductive, yielding an 

even higher MSE than the physics-uninformed baseline model. This result 

underscores a critical insight: the injudicious application of physical constraints in a 

PINN can degrade, rather than improve, predictive performance. 
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Table 3. Combinations of Governing equations 

Governing Eqn # of layers # of neurons MSE 

CE 5 50 0.24 

NSE & CE 5 50 0.16 

PPE & CE 5 50 0.12 

None 5 50 0.23 

 

Therefore, our final optimized model for this study utilizes a 5-layer, 50-neuron 

architecture with a physics-informed loss term comprising the PPE and CE to ensure 

the highest predictive accuracy. 

 

3.2 Analysis of predicted results 

While Mean Squared Error (MSE) is a standard metric for regression, it offers 

limited physical insight into the accuracy of a predicted flow field. To provide a more 

robust and domain-specific evaluation, we assess the PINN’s performance by 

applying the Micro drag technique (Section 2.2) to the reconstructed wake. We then 

compare the drag coefficient (CD) calculated from the PINN’s output with the ground 

truth CD from CFD simulation. We define our success criterion as a discrepancy of 

less than 0.001 (1 count), which would validate the model’s practical utility for 

aerodynamic analysis. 

Figure 6. visually confirms the high fidelity of the reconstruction, comparing the 

PINN-predicted flow field in the u≤10m/s zone with the ground truth. It is remarkable 

that the model achieved this accuracy without any direct training on the ground truth 

data within this unmeasurable region, relying solely on surrounding data and physical 

constraints. 

A compelling quantitative comparison is presented in Figure 7., which shows Drag 

maps for three scenarios: the CFD ground truth, the PINN reconstruction, and the 

incomplete data mimicking the experimental measurements. The map from the 

incomplete data fails to capture the crucial drag recovery dynamics (the blue, CD < 0 

region), leading to a significant overestimation of the total drag coefficient (CD = 

0.314) versus the ground truth (CD = 0.294). Conversely, the PINN-reconstructed map 

successfully reproduces the drag recovery region, resulting in a highly accurate drag 

coefficient of 0.295─a deviation of just 1 count from the ground truth. 

The excellent agreement, with the CD difference falling well within our 1-count 

threshold, confirms that the PINN-based reconstruction is not only accurate but also 

robust enough for quantitative vehicle wake analysis. 
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(a) Predicted results by PINNs (u, v, w) 

 

(b) ground truth (u, v, w) 

 

(c) PINNs prediction vs. ground truth: velocity distribution in the u < 10m/s 

region at z=0.725 

Figure 6. PINNs results, ground truth’s flow fields & velocity distribution 

 

 

 

     (a) ground truth              (b) reconstructed by PINNs           (c) Except u < 10m/s 

Figure 7. Drag map visualization 
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3.3 Case Study: Application to Real-World Wind Tunnel Measurements 

Having validated our PINNs framework against high-fidelity CFD data, the next 

critical step was to prove its efficacy on real, incomplete experimental measurements. 

This section details a case study where the methodology was deployed during 

development of the new IONIQ 5 (PE), using sparse data gathered directly from wind 

tunnel test. 

The primary engineering goal was to lower the vehicle’s drag coefficient (CD) to 

increase its All-Electric Range (AER). First, the original IONIQ 5 was evaluated in 

the wind tunnel. Our PINN model was then applied to its sparse wake measurements 

to reconstruct a complete flow field. The resulting drag map analysis (Fig8.) provided 

a crucial insight that was otherwise unobtainable from the raw data: an unusually weak 

drag recovery region. The quantitative assessment, enabled by our method, pinpointed 

the roof spoiler (white box) as the primary culprit, responsible for a substantial 18% 

of the total drag. 

Armed with this direct, quantitative feedback from experimental data, engineers 

redesigned the spoiler for the new IONIQ 5. The modified vehicle was re-tested in the 

wind tunnel, and the PINN analysis was repeated. The new Drag map (Fig8.) 

confirmed the success of the modification: the drag contribution from the redesigned 

spoiler was dramatically reduced to approximately 3%. This case study showcases the 

framework’s successful transition from a validation tool to a powerful diagnostic 

instrument in an active vehicle development program. 

 

 

Figure 8. Drag map: IONIQ 5 (left), the new IONIQ 5 (right) 

 

4 Conclusion 

This study successfully developed a Physics-Informed Neural Networks (PINNs) 

framework capable of transforming incomplete, sparse wake measurements into 

complete, actionable flow fields. We initially validated the model’s fundamental 

accuracy using a semi-synthetic CFD dataset of the DrivAer Estate model, optimizing 

it to a 5-layer architecture with a PPE-CE physics loss that predicted the drag 

coefficient to within 1 count (CD 0.001). 
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Crucially, this research takes the vital step from validation in a controlled, simulated 

environment to successful application on real-world experimental data. To prove its 

practical readiness, the framework was applied directly to sparse data from a wind 

tunnel test of the new IONIQ 5. This PINN-driven analysis provided unprecedented 

quantitative insights, identifying a suboptimal roof spoiler as a major contributor to 

drag. The subsequent design improvements, guided by these findings, yielded a 

substantial drag reduction. This successful application on genuine experimental data 

validates our approach as a robust and impactful tool capable of bridging the gap 

between incomplete measurements and actionable engineering insights in the 

automotive development cycle. We anticipate that its capabilities can be further 

extended across diverse vehicle platforms by leveraging techniques like transfer 

learning. 
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