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Abstract: Cabin climate control in battery electric trucks is particularly 

challenging due to prolonged occupancy periods and the high energy demand of 

HVAC systems, which can significantly reduce driving range. This work 

investigates advanced control strategies for cabin thermal management using a 

model-in-the-loop simulation environment representative of long-haul 

operations. A model predictive controller (MPC) and a reinforcement learning 

(RL) framework were developed and benchmarked against a rule-based strategy 

over a 22-hour driving cycle for a cabin cooling scenario. The MPC improved 

thermal comfort by maintaining temperature, CO2 concentration, and humidity 

within defined limits, while achieving energy usage comparable to the rule-based 

strategy, thereby demonstrating its capability for multi-objective control under 

realistic boundary conditions. The initial application of RL as a complementary 

data-driven approach indicates that comfort targets can be achieved through a 

direct trade-off between energy use and comfort. However, RL must be extended 

to true multi-target control to be properly evaluated against the RB approach. In 

conclusion, the integration effort of both control strategies was assessed, 

providing an understanding of their respective advantages and limitations for 

future thermal management applications. 

Keywords: Model Predictive Control (MPC), Battery Electric Vehicle (BEV), 

Reinforcement Learning (RL), Cabin comfort 

1 Introduction 

The rapid expansion of electromobility is a cornerstone of Europe’s climate strategy 

on the path to carbon neutrality. Policy packages such as the EU Green Deal and “Fit 

for 55” aim to accelerate the transition by tightening CO₂ limits and incentivizing 

zero-emission road transport [1]. In Germany, registrations of fully electric trucks 

increased from 24,380 in 2020 to 92,312 in 2025 [2], yet they still represent only a 

small fraction of the 3.83 million trucks registered overall in 2025 [3]. Despite 

growing adoption, there remains a significant gap. Enhancing the real-world 

performance and appeal of electric heavy-duty trucks continues to be crucial, as range 

limitations remain a key concern for fleet owners [4].  
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Figure 1: Number of trucks with alternative drivetrains, Germany (2020 - 2025) [2]. 

For battery electric vehicles (BEVs), cabin air conditioning is a major auxiliary load 

that can reduce usable driving range under real operating conditions. Especially in 

cold weather, the absence of powertrain waste heat means the cabin heating demand 

must be supplied electrically from the traction battery. This has a significant impact 

on the range [5]. In heavy-duty applications such as battery electric trucks, this 

challenge is intensified by prolonged cabin occupancy and overnight stays (“hotel 

function”), which increase HVAC energy demand [6]. Maintaining target 

temperature, humidity and CO₂ levels while minimizing energy consumption requires 

advanced, adaptable control strategies [7] [8]. 

This work investigates intelligent control strategies to improve the energy efficiency 

and comfort of cabin climate systems in heavy-duty BEVs, focusing on model 

predictive control (MPC). The MPC leverages accurate thermal models and external 

data sources, such as ambient forecasts, to manage the cabin climate dynamically 

under extended-occupancy conditions. It is implemented within a detailed 

MATLAB/Simulink simulation environment developed as part of the EU research 

project ESCALATE, which focuses on developing modular, cost-effective heavy-

duty vehicles, leveraging the realistic digital twin presented in this study.  

Furthermore, a preliminary reinforcement learning (RL) framework is introduced as 

a complementary, data-driven control approach. The method is developed with a focus 

on general applicability to cabin climatization problems, emphasizing key design 

aspects such as state representation, reward shaping, and environment interaction. 

This framework forms the basis for future integration into thermal management 

systems and enables the development of hybrid control strategies that combine the 

strengths of RL and MPC. 

2 Methodology 

This section outlines the two control approaches of MPC and RL, which are integrated 

and investigated in this work. Both are implemented in a model-in-the-loop (MiL) 

simulation environment developed in MATLAB/Simulink.  
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These approaches both offer the ability to develop controllers which are able to do 

multi-objective control based on optimization methods. The simulation environment 

features a detailed full thermal system model and a reduced-order model (ROM) of 

the cabin and HVAC system. The latter enables efficient and realistic closed-loop 

control development and is described in chapter 2.3. The objective for both controllers 

in this work builds on the initial development of a cooling controller. It focuses on 

regulating air temperature, cabin CO₂ concentration, and relative humidity by 

controlling the compressor rate, blower rate, and recirculation rate. 

2.1 Model Predictive Controller 

Cabin air conditioning in electric vehicles presents a nonlinear, multivariable control 

problem (NLP), influenced by ambient conditions, driver demands, and internal 

system dynamics. Model Predictive Control (MPC) is well-suited for this task due to 

its ability to predict future states, enforce system constraints, and optimize control 

actions over a defined prediction horizon [9] [10]. In this work, MPC is implemented 

using the acados framework, which supports real-time optimization [11]. The user 

defines the system dynamics, control variables, and the cost function, while the 

framework handles formulation of the optimization problem and solver execution. 

The problem is automatically discretized in discrete timesteps 𝑘 over the prediction 

horizon on which the cost function 𝐽 is minimized via direct multiple shooting. 

Afterwards it is solved with a sequential quadratic programming method (SQP). For 

a comprehensive treatment of NLP solution methods, the reader is referred to in-depth 

literature [10] [11].  

The main objectives of the controller are contained within a compact representation 

of the system boundaries (eq. 1) and the cost function (eq. 2) and include maintaining 

passenger comfort while minimizing energy consumption. The comfort terms are 

modelled as the system states 𝑥 and are bound to a lower boundary 𝑥lb and an upper 

boundary 𝑥ub. The slack variable 𝑥slack allows for constraint relaxation, thereby 

converting the hard boundary into a soft boundary. The cost function is defined as the 

sum of the state-related term 𝐽x and the cost term 𝐽u, which are both evaluated and 

accumulated over the prediction horizon. 

𝑥lb(k) ≤  𝑥(𝑘) +  𝑥slack(k) ≤  𝑥ub(k)  (1) 

𝐽 =  ∑ 𝐽x(k)
𝑁
𝑘=1 +  ∑ 𝐽u(k)

𝑁−1
𝑘=0   (2) 

Minimization of the cost function inherently enforces the state constraints. Equation 

3 defines the state-related term as the weighted sum of all quadratic slack variables of 

the MPC. The weighting is determined by the tunable matrix 𝑄. The central slack 

variables consist of the cabin air temperature 𝑇slack, the CO2 concentration 𝑋CO2, slack 

and the relative humidity 𝑋hum, slack. 

𝐽x(k) =   𝑄Tslack
𝑇slack(𝑘)2 + 𝑄XCO2, slack

𝑋CO2, slack(𝑘)2 + 𝑄Xhum, slack
𝑋hum, slack(𝑘)2 (3) 
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Finally, the cost term in eq. (4) contains the weighted quadratic energy consumption 

of the compressor 𝐸Cpr and the cabin blower 𝐸Blower. The power consumption of the 

recirculation flap is assumed negligible. 

𝐽u(k) =  𝑄Cpr𝐸Cpr(𝑘)2 + 𝑄Blower𝐸Blower(𝑘)2  (4) 

With the problem formulation established, the MPC is then integrated into a model-

in-the-loop (MiL) environment in MATLAB/Simulink, which consists of three core 

components: the MPC controller, the plant model, and the prediction module. The 

controller operates with a fixed sampling interval of 10 s, selected to ensure both 

robust control performance and real-time feasibility. This interval reflects the slow 

thermal dynamics of the cabin environment and the response characteristics of the 

actuators. At each step, the controller computes the optimal control and state 

trajectories over a prediction horizon of 10 minutes. This horizon length is sufficient 

to capture the dominant cabin thermal dynamics and anticipated disturbances, while 

allowing the system states to be adjusted within this time frame. After the optimization 

is completed, only the first element of the control input vector is applied to the plant 

model. The plant, representing the HVAC and cabin thermal system, simulates the 

system response at each step, and the updated states are fed back to the MPC, thereby 

closing the control loop. The prediction module provides forecasted boundary 

conditions, including relevant ambient factors and comfort constraints derived from 

route and trip data (e.g., planned stops). By solving the optimization problem over the 

moving horizon, the controller can anticipate future disturbances and proactively 

adjust its control actions. Ultimately, the MPC is applied to the reduced-order model, 

enabling efficient testing and iteration without compromising the physical relevance 

of the results. 

2.2 Reinforcement Learning Controller 

RL is investigated in this research as a data-driven control strategy for cabin climate 

management. A Deep Deterministic Policy Gradient (DDPG) agent is employed, 

following an actor–critic structure (Fig. 2). DDPG agents can operate in a continuous 

action space and are therefore suitable for fully variable control [12] [13]. An RL 

agent interacts with its environment in a closed loop: it observes the current state 𝑠t, 

selects an action 𝑎t, and receives the next state 𝑠(t+1) together with a scalar reward 𝑟t. 

By maximizing cumulative rewards through repeated interaction, the agent gradually 

learns strategies that optimize long-term performance. The DDPG architecture is 

based on the following three fundamental components: 

• Actor (policy network 𝜃μ): maps states 𝑠t to continuous actions 𝑎t = 𝜇(𝑠t |𝜃μ). 

• Critic (Q-network 𝜃Q): evaluates these actions by estimating their long-term 

value 𝑄(𝑠t, 𝑎t). 

• Training process: the Actor is updated via policy gradients, the Critic via 

minimization of a loss function. Soft target updates are applied to stabilize 

training.  
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Figure 2: Integration of the RL agent framework inside the simulation environment. 

Two complementary training approaches are pursued. In the first, the agent is trained 

directly on the high-fidelity digital twin, which avoids model reduction and ensures 

maximum physical fidelity, but at the cost of substantial computational resources. In 

the second, training is performed on the ROM, enabling faster iterations, direct 

benchmarking with MPC, and providing insight into potential hybrid MPC–RL 

strategies. The RL agent processes the system states cabin air temperature (𝑡CbnAir) 

and setpoint 𝑡CbnAirSP, ambient temperature (𝑡Amb), HVAC outlet air temperature 

(𝑡HVACAirOut), and action signals (current 𝑟Comp,t and previous 𝑟Comp,t−1). Based on 

these inputs, it determines the control action of the compressor (𝑟Comp). The agent is 

trained using a composite reward that balances comfort, energy efficiency, and 

smoothness of control (see Figure 3). The temperature reward targets the passenger 

comfort by penalizing deviations from the cabin air temperature setpoint. The energy 

reward promotes efficient operation by discouraging high activation levels of HVAC 

components. Finally, the smoothness reward penalizes abrupt control changes, 

targeting stable and hardware-friendly operation.  

 

Figure 3: Sub-reward functions for temperature, energy, and smoothness. 
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2.3 Reduced-Order-Model of Cabin and HVAC 

To enable efficient development of the controllers, a reduced-order-model of the 

vehicle cabin and HVAC system was created. The ROM captures the essential thermal 

dynamics while ensuring low computational load and enabling rapid simulation. 

Validation was conducted using the full thermal system model. This model was 

previously plausibilized to represent the thermal behavior of a generic truck, ensuring 

physical consistency. 

The cabin is modeled as a single-zone thermal system, assuming spatially uniform air 

temperature. The core of the model is an energy balance over the enclosed air volume: 

 
𝑑𝐸𝐶𝑎𝑏𝑖𝑛

𝑑𝑡
=  ∑ 𝑄̇𝑖 +  ∑ 𝑚̇𝑖𝑛 ℎ𝑖𝑛 − ∑ 𝑚̇𝑜𝑢𝑡 ℎ𝑜𝑢𝑡 (5) 

This equation accounts for internal energy changes due to air temperature variation, 

enthalpy flows from ventilation, and additional heat sources or sinks 𝑄̇𝑖, such as solar 

radiation or internal gains. To represent the thermal inertia of the cabin interior, a 

lumped thermal mass is included in equation 6. This mass represents components like 

seats, dashboard and other internal masses and is thermally coupled to the cabin air 

via a resistance Rth, Interior. 

Q̇Interior =  
TAir,Cabin−TInterior

Rth, Interior
 (6) 

This formulation allows the model to replicate realistic heating and cooling dynamics, 

including the effect of delayed thermal response. The resistance Rth, Interior  and other 

parameters were validated within the Simulink full vehicle model. The HVAC system 

is modeled with key functionalities such as air mixing, heating, and cooling via heat 

exchangers, as well as flap positions to switch between fresh air and recirculation 

modes. The blower fan modulates the air mass flow supplied to the cabin.  

In addition to thermal comfort, the model also considers air quality, specifically the 

accumulation of CO₂ in recirculation mode. The mass balance for CO₂ includes both 

external input and occupant respiration as source terms: 

𝑚̇Air𝑋Inlet + 𝑚̇CO2, Passengers = 𝑀  
𝑑𝑋Cabin

𝑑𝑡
+  𝑚̇Air 𝑋Cabin (7) 

Here, 𝑥𝐼𝑛𝑙𝑒𝑡 and  𝑥𝐶𝑎𝑏𝑖𝑛 are the CO₂ concentrations of incoming air and cabin air, and 

𝑀 is the total cabin air mass. Leakages are neglected in this reduced order model. 

Under full recirculation, CO₂ concentration increases steadily, making the model 

suitable for studying the trade-off between energy efficiency and air quality. As a 

second metric for air quality the cabin air humidity is modelled by a control volume 

mass balance of the water vapor. The rate of change of the cabin humidity ratio 𝑤̇𝐴𝑖𝑟 

is expressed as: 

𝑤̇Air =
1

𝑚Air
 [𝑚̇Air(𝑤mix − 𝑤Cabin) +  𝑚̇gen + 𝑚̇deh]  (8) 
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Here,  𝑚𝐴𝑖𝑟 denotes the total air mass inside the cabin. The first term accounts for the 

humidity change due to exchange with the supply airflow, with 𝑚̇𝐴𝑖𝑟 representing the 

air mass flow into the cabin and 𝑤𝑚𝑖𝑥 the humidity ratio of the mixed ambient and 

recirculated air. The second term 𝑚̇𝑔𝑒𝑛, describes the generation of water vapor by 

passengers (e.g., through breathing and perspiration). The third term 𝑚̇𝑑𝑒ℎ, represents 

the removal of moisture through condensation at the evaporator coil surface whenever 

the incoming air exceeds the saturation limit at coil temperature. Overall, this ROM 

provides the necessary balance between physical fidelity and computational 

efficiency, enabling its use in the computational expensive MPC and RL control 

development. 

3 Results & Discussion 

Using the MiL environment described previously, the performance of the MPC and 

the RL controller was evaluated under varying ambient conditions based on real-world 

measurement data. To assess robustness, stochastic disturbances were added to the 

ambient temperature, humidity, and solar radiation, introducing controlled 

misalignment between the plant model and the controller’s internal prediction model. 

The evaluation covered a 22 h 15 min cycle representative of long-haul truck 

operation. The cycle consisted of two driving phases of 3 h 45 min and 5 h, a 12 h 

overnight stay, and 45 min rest periods in between. Driver presence is assumed 

according to an expected occupancy schedule. During the overnight stay, the sleep 

mode is activated in which the cabin temperature setpoints are lowered to enhance 

comfort during rest. During the day, these values are set at 22 °C for the upper 

boundary and at 20 °C for the lower boundary. The relative humidity setpoints during 

the day are defined between 30 - 60% and are bound to a stricter window of 35 - 55% 

during sleep mode. For the CO2 concentration an upper boundary of 1200 ppm is 

defined throughout occupancy of the cabin. This setup provides a comprehensive 

framework for evaluating the controllers under realistic, time-varying thermal 

boundary conditions, including heat soak, idle periods, and extended occupancy.  

To establish a baseline, a rule-based strategy with fixed recirculation rates was applied 

across the cycle to control the cabin air temperature. Figure 3 illustrates the effect of 

increasing the recirculation rate on total HVAC energy consumption.  

 

Figure 3: Energy consumption of the rule-based HVAC control at average ambient 

temperature of 32 °C with varying recirculation rates. 
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A clear trend is visible: as the recirculation rate increases from 0% to 100%, the energy 

demand steadily decreases from 60.6 kWh to 28.4 kWh, corresponding to a total 

reduction of approximately 53.1%.  However, high recirculation rates also impact the 

performance in terms of cabin comfort such as temperature targets, relative humidity, 

and CO₂ concentration. Simulation results show that the CO₂ concentration threshold 

of 1200 ppm is only exceeded at recirculation rates above 96 percent, indicating that 

high recirculation levels can maintain acceptable air quality while still offering energy 

savings. These findings highlight the need for dynamic control strategies, which can 

continuously balance energy efficiency and air quality, rather than relying on static 

setpoints. 

Consequently, the performance of the MPC, RL and RB strategy are compared in the 

following section. As initially stated, to complement the comparison a preliminary RL 

framework was developed and applied. Similar to the RB approach, only the cabin 

temperature was controlled using compressor actuation alone, while maintaining a 

fixed recirculation rate and blower speed. To ensure comparability, the recirculation 

rate of the RB approach was selected to align its energy usage with that of the MPC 

approach and ensure a sufficient rate of fresh air. To quantify the control quality of 

the strategies, the target deviation |Δ𝑥(𝑡)| is time-averaged over the periods in which 

the boundaries are exceeded, resulting in three comfort metrics for temperature, CO2 

and humidity. The first metric is the temperature comfort, which is displayed in figure 

4.a. The air quality is evaluated for CO2 levels in figure 4.b and for the relative 

humidity in figure 4.c. 

 

Figure 4: Comparison of comfort metrics for the MPC, RL, and RB strategy  

The MPC strategy achieves the lowest average deviation of 0.03 K compared to 1.1 

K with the RB strategy. This is also reflected in the resulting maximum deviations. 

The MPC maximum deviation from the control target of 6.21 K is present at the 

beginning of cabin conditioning, while the RB strategy reaches an even higher value 

of 16.11 K but at a later stage due to hot soak during the idle phase. During this idle 

phase the MPC achieves a much lower deviation of 2.15 K by pre-conditioning the 

cabin according to the predicted change in the temperature boundaries. 
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The RL strategy achieves an average deviation of 0.62 K but, lacking the predictive 

capability, does not pre-condition the cabin and therefore reaches maximum deviation 

of 16.45 K, similar to the RB strategy. These comfort gains of MPC and RL come at 

only a minor increase in energy consumption, with 30.18 kWh and 30.13 kWh 

respectively, compared to 29.48 kWh for the RB strategy. 

Consequently, air quality discomfort is also evaluated. The MPC targets to maintain 

CO2 levels below a soft-constrained upper bound. This bound is exceeded in some 

cases due to the balancing of the multi-target optimization and the improved 

convergence of the optimization. This results in a recorded average deviation of 10.4 

ppm, which is negligible compared to typical indoor CO2 concentration fluctuations 

and has no perceptible impact on passenger comfort. In contrast, the RB and RL 

strategies do not enforce any explicit CO2 limit since CO2 is not directly controlled. 

As the setpoint was defined to ensure sufficient fresh air, both strategies show no 

violation of the CO2 discomfort metric 

Lastly, humidity deviation is evaluated. The MPC strategy achieves the lowest 

average deviation at 2.5% compared to 3.31% for the RB approach, as the MPC 

explicitly enforces the humidity boundary. The RL strategy exhibits a considerably 

higher deviation of 5.31% since humidity is not actively controlled, leading to 

excessive dehumidification at the evaporator caused by increased compressor 

actuation. Given the average outdoor humidity of 31%, these deviations remain non-

critical under the tested conditions due to overall system stability, though they may 

become more relevant in high-humidity heating scenarios. 

Overall, MPC achieves the best balance between comfort and energy consumption by 

minimizing temperature and humidity deviations while maintaining CO2 within 

acceptable limits. The preliminary RL controller shows intermediate performance by 

improving temperature target deviation, but lacks predictive capabilities and an 

extended actuator control. Nevertheless, it offers a promising foundation for further 

development toward a highly automatable controller design. 

In the following the findings regarding the integration of both MPC and the initial RL 

approach are summarized in figure 5.  

 

Figure 5: Comparison of evaluated performance metrics for MPC and RL approach 

for the MiL application in this work. 
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Here, various performance metrics that were evaluated during the development are 

rated according to the following scale: 

 

1: Very poor (significant drawbacks), 2: Poor (limited suitability),  

3: Moderate (meets minimum requirements), 4: Good (only minor limitations),  

5: Excellent (highly suitable) 

 

The transferability of the MPC is rated as moderate. A major challenge in this work 

was the application of the MPC framework to the full thermal system model. The 

higher complexity of the digital twin caused a divergence between the internal system 

dynamics of the MPC and the actual plant behavior, which prevented direct 

application and led to high deviations to the control targets in the cabin control case. 

This highlights a well-known limitation of MPC, namely the need for model reduction 

to embed an equation-based system model while ensuring real-time feasibility, which 

inevitably leads to a model-plant mismatch [14] [15]. Within digital twins such model 

reduction is often not straightforward. 

One possible mitigation strategy is the use of data-driven surrogate models, although 

this requires additional efforts for system identification and validation [16]. In 

contrast, the RL agent could also be trained directly in the full model environment and 

achieved comparable control performance to the reduced-order model for the cabin 

conditioning task. This potentially eliminates the need for model reduction and 

represents a clear advantage in the digital twin environment. However, this advantage 

is specific to simulations, since the training of RL on real systems would require 

considerably more time and resources. For this reason, RL received a higher 

transferability rating of four. 

The implementation effort of MPC is rated at two, as is the case for RL. For MPC, the 

main effort lies in the development and validation of an internal prediction model 

tailored to the cabin thermal dynamics. The model must be suitable for optimization 

and verified against various measurements or simulation data, which is an obstacle to 

fast integration. RL requires less manual modelling effort since the framework only 

needs to be provided with selected observations and actions. The training of the neural 

networks is then conducted automatically. Due to the inherent flexibility of the RL 

framework, it can be implemented in a wide range of environments and therefore 

offers broad applicability without requiring the detailed modelling knowledge that is 

essential for a grey-box MPC. However, in this work only a simplified control 

objective was investigated. The implementation effort and training requirements are 

expected to increase once additional control variables are incorporated. 

Interpretability plays a decisive role in improving control performance. MPC scores 

higher in this category with a rating of four, whereas RL is rated at two. MPC benefits 

from the possibility of incorporating grey-box models, which supports verification of 

predictions and thereby improves understanding of controller behavior. Furthermore, 

the tuning of the cost function can be conducted in an intuitive manner.  
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RL, on the other hand, operates as a black box and lacks direct interpretability, which 

results in an iterative and often time-consuming process of reward shaping, network 

architecture selection, and hyperparameter tuning. Automating this process through 

optimization-based hyperparameter tuning can resolve this issue as shown in [12]. 

However, the DDPG algorithm used in this study is deterministic, which means that 

it provides consistent outputs when presented with the same observations. This 

property allows the user to draw limited conclusions from the observed controller 

behavior [13]. In line with these limitations, the RL strategy received a lower rating 

of two. 

With respect to computational demand, RL performs better than MPC. RL is rated at 

four, while MPC is rated at two. In this work the MPC used an SQP solver with 

average solution times below 0.5 seconds for a 2.3 GHz CPU, which is sufficient for 

real-time operation in the cabin conditioning task. Nevertheless, execution times are 

expected to increase if the controller is implemented on an embedded microcontroller 

with limited processing power. RL execution times are negligible once the training is 

complete, which represents a clear advantage. The drawback lies in the training phase, 

which is computationally intensive. For the compressor control task, a total of 500 

episodes were run in parallel with 4 CPU cores, resulting in more than 10 hours of 

training. This effort, however, occurs entirely offline and does not affect embedded 

system performance. 

Overall, MPC is better suited to the problem under consideration, as its interpretability 

enables more targeted and reliable implementation, while RL should be regarded as a 

preliminary approach at this stage. 

4 Conclusion 

Model-predictive-control demonstrated its capability to enforce operational 

boundaries and balance energy efficiency for multi-objective control. Reinforcement 

learning was introduced as a framework for cabin climatization, and an initial 

controller was evaluated to determine the requirements for control design. Open 

challenges remain in managing multi-objective control, along with the need for further 

investigation into hyperparameter tuning and reward shaping. Both strategies provide 

distinct advantages, with MPC excelling in interpretability and offering a more 

transparent design process, while RL shows superior transferability to detailed 

thermal system models. Future work will extend the MPC with active heating and 

advanced humidity control, explore data-driven models as internal predictors, and 

expand RL to additional control variables. Furthermore, synergies between RL and 

MPC will be evaluated, with the aim of combining the interpretability and constraint-

handling of MPC with the adaptability and transferability of RL to enable more 

efficient cabin climatization strategies. 
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