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Abstract: Cabin climate control in battery electric trucks is particularly
challenging due to prolonged occupancy periods and the high energy demand of
HVAC systems, which can significantly reduce driving range. This work
investigates advanced control strategies for cabin thermal management using a
model-in-the-loop simulation environment representative of long-haul
operations. A model predictive controller (MPC) and a reinforcement learning
(RL) framework were developed and benchmarked against a rule-based strategy
over a 22-hour driving cycle for a cabin cooling scenario. The MPC improved
thermal comfort by maintaining temperature, CO, concentration, and humidity
within defined limits, while achieving energy usage comparable to the rule-based
strategy, thereby demonstrating its capability for multi-objective control under
realistic boundary conditions. The initial application of RL as a complementary
data-driven approach indicates that comfort targets can be achieved through a
direct trade-off between energy use and comfort. However, RL must be extended
to true multi-target control to be properly evaluated against the RB approach. In
conclusion, the integration effort of both control strategies was assessed,
providing an understanding of their respective advantages and limitations for
future thermal management applications.

Keywords: Model Predictive Control (MPC), Battery Electric Vehicle (BEV),
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1 Introduction

The rapid expansion of electromobility is a cornerstone of Europe’s climate strategy
on the path to carbon neutrality. Policy packages such as the EU Green Deal and “Fit
for 55” aim to accelerate the transition by tightening CO: limits and incentivizing
zero-emission road transport [1]. In Germany, registrations of fully electric trucks
increased from 24,380 in 2020 to 92,312 in 2025 [2], yet they still represent only a
small fraction of the 3.83 million trucks registered overall in 2025 [3]. Despite
growing adoption, there remains a significant gap. Enhancing the real-world
performance and appeal of electric heavy-duty trucks continues to be crucial, as range
limitations remain a key concern for fleet owners [4].
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Figure 1: Number of trucks with alternative drivetrains, Germany (2020 - 2025) [2].

For battery electric vehicles (BEVs), cabin air conditioning is a major auxiliary load
that can reduce usable driving range under real operating conditions. Especially in
cold weather, the absence of powertrain waste heat means the cabin heating demand
must be supplied electrically from the traction battery. This has a significant impact
on the range [5]. In heavy-duty applications such as battery electric trucks, this
challenge is intensified by prolonged cabin occupancy and overnight stays (“hotel
function”), which increase HVAC energy demand [6]. Maintaining target
temperature, humidity and CO: levels while minimizing energy consumption requires
advanced, adaptable control strategies [7] [8].

This work investigates intelligent control strategies to improve the energy efficiency
and comfort of cabin climate systems in heavy-duty BEVs, focusing on model
predictive control (MPC). The MPC leverages accurate thermal models and external
data sources, such as ambient forecasts, to manage the cabin climate dynamically
under extended-occupancy conditions. It is implemented within a detailed
MATLAB/Simulink simulation environment developed as part of the EU research
project ESCALATE, which focuses on developing modular, cost-effective heavy-
duty vehicles, leveraging the realistic digital twin presented in this study.
Furthermore, a preliminary reinforcement learning (RL) framework is introduced as
a complementary, data-driven control approach. The method is developed with a focus
on general applicability to cabin climatization problems, emphasizing key design
aspects such as state representation, reward shaping, and environment interaction.
This framework forms the basis for future integration into thermal management
systems and enables the development of hybrid control strategies that combine the
strengths of RL and MPC.

2 Methodology
This section outlines the two control approaches of MPC and RL, which are integrated

and investigated in this work. Both are implemented in a model-in-the-loop (MiL)
simulation environment developed in MATLAB/Simulink.
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These approaches both offer the ability to develop controllers which are able to do
multi-objective control based on optimization methods. The simulation environment
features a detailed full thermal system model and a reduced-order model (ROM) of
the cabin and HVAC system. The latter enables efficient and realistic closed-loop
control development and is described in chapter 2.3. The objective for both controllers
in this work builds on the initial development of a cooling controller. It focuses on
regulating air temperature, cabin CO: concentration, and relative humidity by
controlling the compressor rate, blower rate, and recirculation rate.

2.1 Model Predictive Controller

Cabin air conditioning in electric vehicles presents a nonlinear, multivariable control
problem (NLP), influenced by ambient conditions, driver demands, and internal
system dynamics. Model Predictive Control (MPC) is well-suited for this task due to
its ability to predict future states, enforce system constraints, and optimize control
actions over a defined prediction horizon [9] [10]. In this work, MPC is implemented
using the acados framework, which supports real-time optimization [11]. The user
defines the system dynamics, control variables, and the cost function, while the
framework handles formulation of the optimization problem and solver execution.
The problem is automatically discretized in discrete timesteps k over the prediction
horizon on which the cost function J is minimized via direct multiple shooting.
Afterwards it is solved with a sequential quadratic programming method (SQP). For
a comprehensive treatment of NLP solution methods, the reader is referred to in-depth
literature [10] [11].

The main objectives of the controller are contained within a compact representation
of the system boundaries (eq. 1) and the cost function (eq. 2) and include maintaining
passenger comfort while minimizing energy consumption. The comfort terms are
modelled as the system states x and are bound to a lower boundary x;, and an upper
boundary x,,. The slack variable xq, allows for constraint relaxation, thereby
converting the hard boundary into a soft boundary. The cost function is defined as the
sum of the state-related term J, and the cost term J,, which are both evaluated and
accumulated over the prediction horizon.

Xipao) < X(k) + Xgacko < Xub) ()
J = Yh=1)xto + ZR=0Ju ()

Minimization of the cost function inherently enforces the state constraints. Equation
3 defines the state-related term as the weighted sum of all quadratic slack variables of
the MPC. The weighting is determined by the tunable matrix Q. The central slack
variables consist of the cabin air temperature Tyj,, the CO2 concentration X¢oz, sjack
and the relative humidity Xpym siack-

]X(k) = QTslaCk Tstack (k) 2+ QXCOZ_ SlaCkXCOZ, slack (k) 2+ QXhum_ S1aCthum, slack (k) 2 (3)
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Finally, the cost term in eq. (4) contains the weighted quadratic energy consumption
of the compressor Ecp, and the cabin blower Egjoyer- The power consumption of the

recirculation flap is assumed negligible.

]u(k) = QCprECpr(k)2 + QBlowerEBlower(k)2 (4)

With the problem formulation established, the MPC is then integrated into a model-
in-the-loop (MiL) environment in MATLAB/Simulink, which consists of three core
components: the MPC controller, the plant model, and the prediction module. The
controller operates with a fixed sampling interval of 10 s, selected to ensure both
robust control performance and real-time feasibility. This interval reflects the slow
thermal dynamics of the cabin environment and the response characteristics of the
actuators. At each step, the controller computes the optimal control and state
trajectories over a prediction horizon of 10 minutes. This horizon length is sufficient
to capture the dominant cabin thermal dynamics and anticipated disturbances, while
allowing the system states to be adjusted within this time frame. After the optimization
is completed, only the first element of the control input vector is applied to the plant
model. The plant, representing the HVAC and cabin thermal system, simulates the
system response at each step, and the updated states are fed back to the MPC, thereby
closing the control loop. The prediction module provides forecasted boundary
conditions, including relevant ambient factors and comfort constraints derived from
route and trip data (e.g., planned stops). By solving the optimization problem over the
moving horizon, the controller can anticipate future disturbances and proactively
adjust its control actions. Ultimately, the MPC is applied to the reduced-order model,
enabling efficient testing and iteration without compromising the physical relevance
of the results.

2.2 Reinforcement Learning Controller

RL is investigated in this research as a data-driven control strategy for cabin climate
management. A Deep Deterministic Policy Gradient (DDPG) agent is employed,
following an actor—critic structure (Fig. 2). DDPG agents can operate in a continuous
action space and are therefore suitable for fully variable control [12] [13]. An RL
agent interacts with its environment in a closed loop: it observes the current state s,
selects an action ay, and receives the next state s(¢4 1) together with a scalar reward .
By maximizing cumulative rewards through repeated interaction, the agent gradually
learns strategies that optimize long-term performance. The DDPG architecture is
based on the following three fundamental components:

e Actor (policy network 6%): maps states s; to continuous actions a; = u(s; |64).

e Critic (Q-network 69): evaluates these actions by estimating their long-term
value Q (s, ay).

e Training process: the Actor is updated via policy gradients, the Critic via
minimization of a loss function. Soft target updates are applied to stabilize
training.
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Figure 2: Integration of the RL agent framework inside the simulation environment.

Two complementary training approaches are pursued. In the first, the agent is trained
directly on the high-fidelity digital twin, which avoids model reduction and ensures
maximum physical fidelity, but at the cost of substantial computational resources. In
the second, training is performed on the ROM, enabling faster iterations, direct
benchmarking with MPC, and providing insight into potential hybrid MPC-RL
strategies. The RL agent processes the system states cabin air temperature (£cpnair)
and setpoint tcpnairsp, @mbient temperature (t5mp), HVAC outlet air temperature
(tuvacairout)> and action signals (current 1¢omp ¢ and previous 7¢omp,—1)- Based on
these inputs, it determines the control action of the compressor (7¢omp). The agent is
trained using a composite reward that balances comfort, energy efficiency, and
smoothness of control (see Figure 3). The temperature reward targets the passenger
comfort by penalizing deviations from the cabin air temperature setpoint. The energy
reward promotes efficient operation by discouraging high activation levels of HVAC
components. Finally, the smoothness reward penalizes abrupt control changes,
targeting stable and hardware-friendly operation.
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Figure 3: Sub-reward functions for temperature, energy, and smoothness.
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2.3 Reduced-Order-Model of Cabin and HVAC

To enable efficient development of the controllers, a reduced-order-model of the
vehicle cabin and HVAC system was created. The ROM captures the essential thermal
dynamics while ensuring low computational load and enabling rapid simulation.
Validation was conducted using the full thermal system model. This model was
previously plausibilized to represent the thermal behavior of a generic truck, ensuring
physical consistency.

The cabin is modeled as a single-zone thermal system, assuming spatially uniform air
temperature. The core of the model is an energy balance over the enclosed air volume:

dEZ% = X Q; + X Min hin — % Mout Rout (5)
This equation accounts for internal energy changes due to air temperature variation,
enthalpy flows from ventilation, and additional heat sources or sinks Q;, such as solar
radiation or internal gains. To represent the thermal inertia of the cabin interior, a
lumped thermal mass is included in equation 6. This mass represents components like
seats, dashboard and other internal masses and is thermally coupled to the cabin air
via a resistance Ry Interior-

anterior — TAir,}-(iabin_Tl-nterior (6)
th, Interior
This formulation allows the model to replicate realistic heating and cooling dynamics,
including the effect of delayed thermal response. The resistance Ry, interior and other
parameters were validated within the Simulink full vehicle model. The HVAC system
1s modeled with key functionalities such as air mixing, heating, and cooling via heat
exchangers, as well as flap positions to switch between fresh air and recirculation
modes. The blower fan modulates the air mass flow supplied to the cabin.

In addition to thermal comfort, the model also considers air quality, specifically the
accumulation of CO: in recirculation mode. The mass balance for CO: includes both
external input and occupant respiration as source terms:

. . _ dXcabin .
mAirXInlet + mCOz, Passengers — M dt + Mair XCabin (7)

Here, x15,10¢ and Xcqpin are the CO: concentrations of incoming air and cabin air, and
M is the total cabin air mass. Leakages are neglected in this reduced order model.
Under full recirculation, CO: concentration increases steadily, making the model
suitable for studying the trade-off between energy efficiency and air quality. As a
second metric for air quality the cabin air humidity is modelled by a control volume
mass balance of the water vapor. The rate of change of the cabin humidity ratio wy;,
is expressed as:

. 1 . . .
Wair = m_Air [mAir(Wmix - WCabin) + mgen + mdeh] (8)

Contribution: 2025 FKFS Conference on Vehicle Aerodynamics and Thermal Management
15 — 16 October 2025 | Leinfelden-Echterdingen



Here, my;, denotes the total air mass inside the cabin. The first term accounts for the
humidity change due to exchange with the supply airflow, with my;,- representing the
air mass flow into the cabin and w,,;, the humidity ratio of the mixed ambient and
recirculated air. The second term m,,, describes the generation of water vapor by
passengers (e.g., through breathing and perspiration). The third term m,p,, represents
the removal of moisture through condensation at the evaporator coil surface whenever
the incoming air exceeds the saturation limit at coil temperature. Overall, this ROM
provides the necessary balance between physical fidelity and computational
efficiency, enabling its use in the computational expensive MPC and RL control
development.

3 Results & Discussion

Using the MiL environment described previously, the performance of the MPC and
the RL controller was evaluated under varying ambient conditions based on real-world
measurement data. To assess robustness, stochastic disturbances were added to the
ambient temperature, humidity, and solar radiation, introducing controlled
misalignment between the plant model and the controller’s internal prediction model.

The evaluation covered a 22 h 15 min cycle representative of long-haul truck
operation. The cycle consisted of two driving phases of 3 h 45 min and 5 h,a 12 h
overnight stay, and 45 min rest periods in between. Driver presence is assumed
according to an expected occupancy schedule. During the overnight stay, the sleep
mode is activated in which the cabin temperature setpoints are lowered to enhance
comfort during rest. During the day, these values are set at 22 °C for the upper
boundary and at 20 °C for the lower boundary. The relative humidity setpoints during
the day are defined between 30 - 60% and are bound to a stricter window of 35 - 55%
during sleep mode. For the CO; concentration an upper boundary of 1200 ppm is
defined throughout occupancy of the cabin. This setup provides a comprehensive
framework for evaluating the controllers under realistic, time-varying thermal
boundary conditions, including heat soak, idle periods, and extended occupancy.

To establish a baseline, a rule-based strategy with fixed recirculation rates was applied
across the cycle to control the cabin air temperature. Figure 3 illustrates the effect of
increasing the recirculation rate on total HVAC energy consumption.

80,0
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= 42,7
35,3
g 400 ’ 31,1 29,5 28,4
=)
< 20,0
>
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Figure 3: Energy consumption of the rule-based HVAC control at average ambient
temperature of 32 °C with varying recirculation rates.
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A clear trend is visible: as the recirculation rate increases from 0% to 100%, the energy
demand steadily decreases from 60.6 kWh to 28.4 kWh, corresponding to a total
reduction of approximately 53.1%. However, high recirculation rates also impact the
performance in terms of cabin comfort such as temperature targets, relative humidity,
and CO: concentration. Simulation results show that the CO: concentration threshold
of 1200 ppm is only exceeded at recirculation rates above 96 percent, indicating that
high recirculation levels can maintain acceptable air quality while still offering energy
savings. These findings highlight the need for dynamic control strategies, which can
continuously balance energy efficiency and air quality, rather than relying on static
setpoints.

Consequently, the performance of the MPC, RL and RB strategy are compared in the
following section. As initially stated, to complement the comparison a preliminary RL
framework was developed and applied. Similar to the RB approach, only the cabin
temperature was controlled using compressor actuation alone, while maintaining a
fixed recirculation rate and blower speed. To ensure comparability, the recirculation
rate of the RB approach was selected to align its energy usage with that of the MPC
approach and ensure a sufficient rate of fresh air. To quantify the control quality of
the strategies, the target deviation |Ax(t)] is time-averaged over the periods in which
the boundaries are exceeded, resulting in three comfort metrics for temperature, CO»
and humidity. The first metric is the temperature comfort, which is displayed in figure
4.a. The air quality is evaluated for CO; levels in figure 4.b and for the relative
humidity in figure 4.c.
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Figure 4: Comparison of comfort metrics for the MPC, RL, and RB strategy

The MPC strategy achieves the lowest average deviation of 0.03 K compared to 1.1
K with the RB strategy. This is also reflected in the resulting maximum deviations.
The MPC maximum deviation from the control target of 6.21 K is present at the
beginning of cabin conditioning, while the RB strategy reaches an even higher value
of 16.11 K but at a later stage due to hot soak during the idle phase. During this idle
phase the MPC achieves a much lower deviation of 2.15 K by pre-conditioning the
cabin according to the predicted change in the temperature boundaries.
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The RL strategy achieves an average deviation of 0.62 K but, lacking the predictive
capability, does not pre-condition the cabin and therefore reaches maximum deviation
of 16.45 K, similar to the RB strategy. These comfort gains of MPC and RL come at
only a minor increase in energy consumption, with 30.18 kWh and 30.13 kWh
respectively, compared to 29.48 kWh for the RB strategy.

Consequently, air quality discomfort is also evaluated. The MPC targets to maintain
CO: levels below a soft-constrained upper bound. This bound is exceeded in some
cases due to the balancing of the multi-target optimization and the improved
convergence of the optimization. This results in a recorded average deviation of 10.4
ppm, which is negligible compared to typical indoor CO» concentration fluctuations
and has no perceptible impact on passenger comfort. In contrast, the RB and RL
strategies do not enforce any explicit CO; limit since COz is not directly controlled.
As the setpoint was defined to ensure sufficient fresh air, both strategies show no
violation of the CO; discomfort metric

Lastly, humidity deviation is evaluated. The MPC strategy achieves the lowest
average deviation at 2.5% compared to 3.31% for the RB approach, as the MPC
explicitly enforces the humidity boundary. The RL strategy exhibits a considerably
higher deviation of 5.31% since humidity is not actively controlled, leading to
excessive dehumidification at the evaporator caused by increased compressor
actuation. Given the average outdoor humidity of 31%, these deviations remain non-
critical under the tested conditions due to overall system stability, though they may
become more relevant in high-humidity heating scenarios.

Overall, MPC achieves the best balance between comfort and energy consumption by
minimizing temperature and humidity deviations while maintaining CO; within
acceptable limits. The preliminary RL controller shows intermediate performance by
improving temperature target deviation, but lacks predictive capabilities and an
extended actuator control. Nevertheless, it offers a promising foundation for further
development toward a highly automatable controller design.

In the following the findings regarding the integration of both MPC and the initial RL
approach are summarized in figure 5.

Transferability =o—=MPC
RL

Control performance Implementation effort

\

Computational demand .

(online) Interpretability
Figure 5: Comparison of evaluated performance metrics for MPC and RL approach
for the MiL application in this work.
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Here, various performance metrics that were evaluated during the development are
rated according to the following scale:

1: Very poor (significant drawbacks), 2: Poor (limited suitability),
3: Moderate (meets minimum requirements), 4: Good (only minor limitations),
5: Excellent (highly suitable)

The transferability of the MPC is rated as moderate. A major challenge in this work
was the application of the MPC framework to the full thermal system model. The
higher complexity of the digital twin caused a divergence between the internal system
dynamics of the MPC and the actual plant behavior, which prevented direct
application and led to high deviations to the control targets in the cabin control case.
This highlights a well-known limitation of MPC, namely the need for model reduction
to embed an equation-based system model while ensuring real-time feasibility, which
inevitably leads to a model-plant mismatch [14] [15]. Within digital twins such model
reduction is often not straightforward.

One possible mitigation strategy is the use of data-driven surrogate models, although
this requires additional efforts for system identification and validation [16]. In
contrast, the RL agent could also be trained directly in the full model environment and
achieved comparable control performance to the reduced-order model for the cabin
conditioning task. This potentially eliminates the need for model reduction and
represents a clear advantage in the digital twin environment. However, this advantage
is specific to simulations, since the training of RL on real systems would require
considerably more time and resources. For this reason, RL received a higher
transferability rating of four.

The implementation effort of MPC is rated at two, as is the case for RL. For MPC, the
main effort lies in the development and validation of an internal prediction model
tailored to the cabin thermal dynamics. The model must be suitable for optimization
and verified against various measurements or simulation data, which is an obstacle to
fast integration. RL requires less manual modelling effort since the framework only
needs to be provided with selected observations and actions. The training of the neural
networks is then conducted automatically. Due to the inherent flexibility of the RL
framework, it can be implemented in a wide range of environments and therefore
offers broad applicability without requiring the detailed modelling knowledge that is
essential for a grey-box MPC. However, in this work only a simplified control
objective was investigated. The implementation effort and training requirements are
expected to increase once additional control variables are incorporated.

Interpretability plays a decisive role in improving control performance. MPC scores
higher in this category with a rating of four, whereas RL is rated at two. MPC benefits
from the possibility of incorporating grey-box models, which supports verification of
predictions and thereby improves understanding of controller behavior. Furthermore,
the tuning of the cost function can be conducted in an intuitive manner.
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RL, on the other hand, operates as a black box and lacks direct interpretability, which
results in an iterative and often time-consuming process of reward shaping, network
architecture selection, and hyperparameter tuning. Automating this process through
optimization-based hyperparameter tuning can resolve this issue as shown in [12].
However, the DDPG algorithm used in this study is deterministic, which means that
it provides consistent outputs when presented with the same observations. This
property allows the user to draw limited conclusions from the observed controller
behavior [13]. In line with these limitations, the RL strategy received a lower rating
of two.

With respect to computational demand, RL performs better than MPC. RL is rated at
four, while MPC is rated at two. In this work the MPC used an SQP solver with
average solution times below 0.5 seconds for a 2.3 GHz CPU, which is sufficient for
real-time operation in the cabin conditioning task. Nevertheless, execution times are
expected to increase if the controller is implemented on an embedded microcontroller
with limited processing power. RL execution times are negligible once the training is
complete, which represents a clear advantage. The drawback lies in the training phase,
which is computationally intensive. For the compressor control task, a total of 500
episodes were run in parallel with 4 CPU cores, resulting in more than 10 hours of
training. This effort, however, occurs entirely offline and does not affect embedded
system performance.

Overall, MPC is better suited to the problem under consideration, as its interpretability
enables more targeted and reliable implementation, while RL should be regarded as a
preliminary approach at this stage.

4 Conclusion

Model-predictive-control demonstrated 1its capability to enforce operational
boundaries and balance energy efficiency for multi-objective control. Reinforcement
learning was introduced as a framework for cabin climatization, and an initial
controller was evaluated to determine the requirements for control design. Open
challenges remain in managing multi-objective control, along with the need for further
investigation into hyperparameter tuning and reward shaping. Both strategies provide
distinct advantages, with MPC excelling in interpretability and offering a more
transparent design process, while RL shows superior transferability to detailed
thermal system models. Future work will extend the MPC with active heating and
advanced humidity control, explore data-driven models as internal predictors, and
expand RL to additional control variables. Furthermore, synergies between RL and
MPC will be evaluated, with the aim of combining the interpretability and constraint-
handling of MPC with the adaptability and transferability of RL to enable more
efficient cabin climatization strategies.
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