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Abstract: By exploiting aerodynamic interactions among road vehicles, 

driving-automation technologies have the potential to reduce energy use 

and emissions.  Traditional platooning concepts consider multiple 

vehicles travelling in close longitudinal proximity within the same road 

lane, but recent research suggests that lateral offsetting and adjacent-lane 

positioning can provide additional benefits in the complex traffic-and-

wind climate experienced in everyday driving.  On-road aerodynamic-

state estimation will be a critical feedback metric for such autonomous-

vehicle systems.  A small sample of multi-vehicle wind-tunnel results is 

used to introduce a concept for using surface-pressure differences to infer 

aerodynamic states, and measurements from on-road in-traffic tests 

highlight ways to differentiate between wake effects from leading 

vehicles and close-proximity pressure-field influences from adjacent-lane 

vehicles.  Complex conditions and varied positions of other vehicles in 

traffic highlight the need to track temporal changes in states, and to use 

multiple metrics to predict aerodynamic states. 

1 Concept and Objectives 

Instantaneous aerodynamic load prediction, whether for air or ground vehicles, has 

vast applications related to performance, energy use, stability, and safety.  Transient 

disturbances from wind gusts, dynamic body motion, or relative motion to proximate 

objects pose significant challenges. Current advances in autonomous aerial and road 

mobility are pushing the limits of necessary environmental feedback to ensure reliable 

control of vehicle motion and to ensure safety, while exploiting or avoiding 

aerodynamic interactions with other bodies.  Examples include: urban air-mobility 

applications for human and goods transportation, for which navigating buildings and 

associated wind disturbances is important [1], and autonomous road-traffic systems, 
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for which close-proximity driving can reduce congestion and save energy via speed 

harmonization and aerodynamic interactions [2].  Sensing the aerodynamic state of a 

vehicle directly may improve real-time control strategies.  Biological systems use 

sensory feedback in this manner, such as fish or birds adapting in real time to exploit 

local aero/hydro-dynamic phenomena [3].  Drones and ground vehicles are bluff 

bodies (non-streamlined), for which surface-pressure changes, rather than air friction, 

are highly correlated with overall aerodynamic performance, and can be used to infer 

local wind conditions and aerodynamic behaviour [4].  Recent work has demonstrated 

the feasibility of using sparse arrays of surface-pressure measurements to infer the 

aerodynamic state of a body, by making use of data-driven methods via transition-

network concepts [5].  This approach is particularly useful for non-linear aerodynamic 

environments with separated/stalled flows, characteristic of bluff bodies. 

Emerging traffic-aerodynamics research and the accelerating deployment of 

connected-and-automated-vehicle (CAV) and intelligent-transportation-systems 

(ITS) technologies suggests that road-vehicle aerodynamic drag, and associated 

energy use, can be optimized via two approaches: 1) optimized multi-lane mixed-

traffic patterns that minimize traffic-system drag [6]; and 2) active aerodynamic 

technologies that adapt to their traffic environment [7].  This paper describes the 

preliminary steps of a project examining the first of these approaches, namely traffic-

aerodynamic optimization using CAV technologies.  Within this project, named 

AeroCAV, an attempt is being made to apply wireless surface-pressure sensing with a 

transition-network approach to estimate real-time aerodynamic performance.  

Section 2 provides some context to the necessity of the approaches being applied, 

while Sections 3 and 4 document the on-road demonstrator and some preliminary 

measurements, respectively. 

2 The Challenge of Characterizing Aerodynamic Boundary Conditions 

Based on a previous proof-of-concept investigation using a wireless-surface-pressure 

measurement system [8], pressure-difference coefficients calculated using a vehicle-

speed-based dynamic pressure showed suitability as indicators of aerodynamic 

boundary conditions.  Building upon that experience, with additional knowledge from 

wind tunnel tests of traffic interactions [6,9], three pressure-coefficient parameters 

have been selected for the current on-road investigations, based on six locations 

around the perimeter of the test vehicle.  Specific locations are the Front centre (F), 

the Back/Base centre (B), the Left-side door (L), the Right-side door (R), the Front 

Left bumper (FL), and the Front Right bumper (FR).  The (F)ront position is intended 

to be as close to the stagnation point as possible.  Pressure-difference coefficients are 

defined based on the front-to-back difference (∆𝐶p̅
𝐹𝐵), the left-to-right-door difference 

(∆𝐶p̅
𝐿𝑅), and the front-bumper left-to-right difference (∆𝐶p̅

𝐹𝐿𝑅).  Challenges, and 

potential solutions, using these parameters are described to provide some context for 

the on-road data presented in a later section. 

The three pressure-difference metrics have been calculated and presented in this 

section for four traffic scenarios that were simulated using a 30%-scale DrivAer model 



Contribution: 2025 FKFS Conference on Vehicle Aerodynamics and Thermal Management  

15 – 16 October 2025 | Leinfelden-Echterdingen  

in the NRC 9 m Wind Tunnel.  Configuration 1 consists of the isolated DrivAer 

Notchback model in uniform flow. Configurations 2 and 3 consist of the DrivAer in 

proximity to an AeroSUV model, in a side-by-side arrangement (see Figure 1) and a 

longitudinal-following arrangement (following the AeroSUV at 2 vehicle-length 

spacing).  Configuration 4 consists of a side-by-side arrangement with a heavy-duty-

vehicle (HDV) model, with the base of the two model nearly coincident (see [10] for 

details of the HDV model).  

 

 

Figure 1: 30%-scale DrivAer and AeroSUV models in a side-by-side configuration 

in the NRC 9 m Wind Tunnel. 

Figure 2 shows the variation with yaw angle of the ∆𝐶p̅
𝐹𝐵, ∆𝐶p̅

𝐿𝑅, and ∆𝐶p̅
𝐹𝐿𝑅 

parameters, using the wind-speed-based ∆𝐶𝑃̅ values from the wind-tunnel 

measurements.  Although base pressure generally decreases with increasing yaw 

angle, the corresponding lateral shift of the front stagnation point away from the 

centreline causes a decrease at the front-centre position, which is approximately equal 

to the change in base pressure.  This results in an insensitivity of the ∆𝐶p̅
𝐹𝐵parameter 

to yaw angle for this DrivAer shape.  This behaviour suggests that ∆𝐶p̅
𝐹𝐵 may be a 

good indicator of dynamic pressure experienced by the vehicle.  The lateral pressure 

differences, at the front of the body (∆𝐶p̅
𝐿𝑅) or from door to door (∆𝐶p̅

𝐹𝐿𝑅), show near-

linear changes with yaw angle, which suggest that either of these parameters may be 

a good indicator of the yaw angle experienced by the vehicle.  The main difference 

between ∆𝐶p̅
𝐹𝐿𝑅 and ∆𝐶p̅

𝐿𝑅 is the slope, with the former having five times the sensitivity 

of the latter. 
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Figure 2: ∆𝐶𝑃̅ metrics from wind-tunnel tests of the isolated DrivAer model. 

Figure 2 estimates the variation of the three ∆𝐶𝑃̅ parameters that would arise when 

encountering different terrestrial wind speeds (increments of 5% of vehicle speed, up 

to 20%).  These ∆𝐶𝑃̅ variations were calculated using a dynamic pressure based on 

the vehicle speed, not the apparent wind speed.  For each of the wind-speed 

increments, the data show a path representing a 360 change in the direction of the 

wind relative to the direction of motion of the vehicle.  Head- and tail-wind conditions 

scale the near-zero-yaw-angle values to greater or lesser magnitudes, while cross-

wind conditions increase the yaw angle.  This is particularly apparent for the front-to-

back ∆𝐶p̅
𝐹𝐵 parameter which shows up to a ±40% change at 0 yaw angle associated 

with the 20% wind-speed increment, again suggesting that it may be a good indicator 

of the dynamic-pressure of the wind.  In a cross-wind orientation, the 20% wind speed 

generates yaw angles that reach about 11.  The incremental ∆𝐶p̅
𝐿𝑅 and ∆𝐶p̅

𝐹𝐿𝑅 values, 

when terrestrial wind effects are estimated, show small changes at low wind speeds, 

and extend reasonably proportionally with yaw angle as cross winds increases.  If 

measured on a vehicle, the ∆𝐶𝑃̅ characteristics shown in Figure 2 suggest that these 

parameters can be used to estimate the wind conditions (speed and yaw angle) while 

driving.  Either ∆𝐶p̅
𝐿𝑅 or ∆𝐶p̅

𝐹𝐿𝑅 could be used to first estimate the yaw angle, while 

the estimated yaw angle and the ∆𝐶p̅
𝐹𝐵 parameter could be used to infer the dynamic 

pressure, and correspondingly the wind speed.  With appropriate characterization, this 

boundary-condition estimation can be related to performance metrics, like the drag 

coefficient, to estimate the “aerodynamic state” of the vehicle. 

When travelling in traffic, significant challenges can arise that invalidate the 

relationships of ∆𝐶p̅
𝐹𝐵, ∆𝐶p̅

𝐿𝑅, and ∆𝐶p̅
𝐹𝐿𝑅 as direct indicators of local aerodynamic 

boundary conditions.  Some of these challenges are highlighted in Figure 3 that 

compares the variability of these ∆𝐶𝑃̅ parameters in different wind conditions for 

specific traffic-interaction conditions.  The isolated vehicle case is contrasted against 

the “side by side SUV” case, the “following an SUV” case, and the “side by side 

HDV” case, based on the wind-tunnel measurements.  For each case, the symbol 

represents the 0-yaw-angle value that represents no-wind conditions, and the lines 

represent the same terrestrial-wind magnitudes of Figure 2.  There is no general 

consistency in the magnitudes and trends of the ∆𝐶𝑃̅ characteristics amongst the 
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various cases.  The “side by side SUV” is similar to the “isolated” case for the ∆𝐶p̅
𝐹𝐵 

parameter, but has distinct and opposite offsets for the ∆𝐶p̅
𝐿𝑅 and ∆𝐶p̅

𝐹𝐿𝑅 parameters 

with some reduction in linearity.  When “following an SUV”, a distinct downward 

shift is observed for ∆𝐶p̅
𝐹𝐵, and reductions in slope and linearity are observed for ∆𝐶p̅

𝐿𝑅 

and ∆𝐶p̅
𝐹𝐿𝑅.  The “side by side HDV” case differs in that it demonstrates significant 

yaw asymmetry in all three parameters, the largest spread of ∆𝐶p̅
𝐹𝐵 values, and non-

monotonic variability with yaw angle.   

 

 

Figure 3: ∆𝐶𝑃̅ metrics in various on-road scenarios relative to yaw angle. 

These varying characteristics in the ∆𝐶𝑃̅ plots of Figure 3 make prediction of local 

boundary conditions much more complicated than isolated-vehicle results would 

suggest.  For example, if a yaw angle is inferred from ∆𝐶p̅
𝐿𝑅 and ∆𝐶p̅

𝐹𝐿𝑅, the variability 

of the ∆𝐶p̅
𝐹𝐵 parameter amongst different conditions will make an accurate estimation 

of the local wind speed nearly impossible.  However, the manner in which the 

scenarios differ from each other suggests that multi-variable or multi-state approaches 

may provide a solution to estimate the “aerodynamic state” of the vehicle.  Figure 4 

shows these types of multi-state relationships for the data of Figure 3, but with the 

∆𝐶𝑃̅ parameters plotted against each other instead of against yaw angle.  Significant 

variation is again seen for the ∆𝐶p̅
𝐹𝐵 plots (left and middle), while the  ∆𝐶p̅

𝐿𝑅 vs. ∆𝐶p̅
𝐹𝐿𝑅 

plot shows some collapsing of data along distinct characteristics for some of the 

traffic-interaction scenarios.  Combined with transition-network concepts [5], a 

suitable approach to aerodynamic-state estimation may be feasible. This concept of 

this project intends to use sparse sensor data captured on the test vehicle and combined 

with a pre-trained algorithm to provide an estimate of the present aerodynamic state. 

By embedding these measurements into a reduced-order phase-space model, the 

system can then characterize distinct aerodynamic regimes and quantify the likelihood 

of transitions between them. Transition-network concepts, coupled with Bayesian 

statistics, will provide the framework for eventually estimating the current 

aerodynamic state in real time. The final result will provide a low-order representation 

of the inherently non-linear vehicle-flow interactions, which should remain robust to 

the elevated noise levels typical of experimental on-road pressure measurements.  The 

remainder of this paper describes preliminary results from an on-road demonstrator 
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being developed that will make use of these concepts, amongst other sensor-fusion 

approaches, to adopt aerodynamic-state estimation as a control metric for minimizing 

energy use of automated multi-vehicle-traffic systems.  Preliminary measurements of 

the ∆𝐶p̅
𝐹𝐵, ∆𝐶p̅

𝐿𝑅, and ∆𝐶p̅
𝐹𝐿𝑅 metrics are shown to demonstrate the potential feasibility 

of boundary-condition estimation from on-road measurements. 

 

 

Figure 4: ∆𝐶𝑃̅ metrics in various on-road scenarios relative to each other. 

3 On-Road Tests 

An on-road demonstrator is being developed for the AeroCAV project with its end-

use goal to provide a platform to demonstrate the potential for energy savings from 

controlled aerodynamic optimization with respect to wind and traffic conditions.  The 

system will be interchangeable on a number of vehicles. For initial concept evaluation, 

the first use is with a compact battery-electric SUV.  This section documents the 

vehicle system, the initial test conditions, and the data processing methods. 

3.1 Vehicle Systems 

The experimental platform consisted of a 2022 Hyundai Ioniq 5 instrumented with a 

Robotic Operating System (ROS)-based multimodal data acquisition system 

developed in-house (Figure 5). The platform integrates multiple temporally 

synchronized perception and vehicle-state sensing nodes. Two RGB cameras were 

mounted at the front and rear of the vehicle to capture forward- and backward-facing 

video. An Ouster OS1 LiDAR was installed to provide 3D point cloud data for depth 

perception and object detection. Vehicle dynamics and reference pressure 

measurements were recorded using an Xsens MTi-710 Inertial Measurement Unit 

(IMU) sensor, installed inside the cabin. Eight Bluetooth Low Energy (BLE)-enabled 

pressure sensors (Arduino Nano 33 BLE Sense Rev2) were mounted around the 

vehicle—three on the front bumper, one on the roof, one on the driver’s side door, one 

on the passenger’s side door, and one on the rear door. An additional sensor was 
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deployed to measure ambient temperature outside the vehicle. All BLE nodes 

streamed pressure or temperature readings to the ROS ecosystem. Vendor supplied 

drivers along with custom microcontroller firmware and ROS drivers were developed 

to interface the BLE-enabled pressure and temperature sensors, enabling time 

synchronized acquisition and storage of camera images, LiDAR scans, IMU readings, 

and pressure/temperature values within a unified ROS bag-based data collection 

framework.  

 

Figure 5: Instrumented test vehicle. 

3.2 Test Conditions 

On-road test data for this initial study were acquired between July 14 and 16, 2025, in 

the province of Ontario, Canada, on roadways between the cities of London and 

Sarnia.  Most data were acquired on Highway 402, which is a four-lane divided 

highway oriented east-west, with combinations of open terrain and tree-lined 

segments, and a speed limit of 110 km/h.  The target test conditions were constant-

speed driving with various boundary conditions.  Early-day testing was conducted, in 

lower-wind conditions, to target isolated constant-speed conditions with as little 

traffic as possible. Only data for which forward vehicles were estimated to be at a 

distance of at least 200 m, or more, were used for these “isolated” conditions, and 

larger distances for heavy trucks.  Test runs of particular interest for this manuscript, 

and descriptions of the pertinent data segments, are: 

• July 15, 2025, Run 01: Travelling westbound on Hwy 402, low traffic, 

relatively-low southerly winds (around 5 km/h or lower, from left to right). 

• July 15, 2025, Run 02: Travelling eastbound on Hwy 402, low traffic, 

relatively-low southerly winds (around 5 km/h or lower, from right to left). 
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• July 15, 2025, Run 03: Travelling westbound on Hwy 402 in the wake of heavy 

trucks, relatively-low southerly winds (around 5 km/h or lower, from right to 

left). 

• July 16, 2025, Run 01: Travelling westbound on Hwy 22 and Hwy 402 in the 

wake of light duty vehicles, moderate southerly winds (around 10 km/h or 

lower, from right to left). 

3.3 Data Methods 

Converting data from the BLE pressure sensors to useful pressure-coefficient-

difference (∆𝐶𝑃̅) values required a number of data processing steps.  A sample set of 

time-series data are provided in Figure 6 demonstrating measured data (speed, 

altitude, pressures) and processed data (pressure coefficients).  

  

 

Figure 6: Subset of test data for Run 01 on July 15, 2025. 

The top plot in Figure 6 shows the vehicle speed and its altitude profile for this test 

segment.  The BLE pressure sensors measure absolute pressure (middle plot), and 

each has a small but quantifiable bias error, relative to the others, that drifts slightly 

over time.  Furthermore, elevation changes and temporal changes due to the local 

climate generate variations in the pressure that can exceed the dynamic pressure of 



Contribution: 2025 FKFS Conference on Vehicle Aerodynamics and Thermal Management  

15 – 16 October 2025 | Leinfelden-Echterdingen  

the apparent wind during testing. The hydrostatic pressure change associated with the 

55 m altitude change (approx. 650 Pa) is equivalent to the dynamic pressure of a 120 

km/h wind.  To compensate for these various factors, to permit a reasonably-accurate 

calculation of the pressure coefficient for each sensor, a method to correct the 

measurements based on a reference pressure acquired internal to the cabin (Pint value 

in the middle plot, from the Xsens IMU sensor) was developed.  The method is still 

under development, but its preliminary results provide a reasonable adjustment for 

each sensor.  The CP time-series data for each sensor are shown in the bottom plot of 

Figure 6.  The Front Centre sensor, which resides near the stagnation point, provides 

a value near one, while the sides and base provide values near or slightly-below zero, 

providing reasonable validation of the approach.  The Front Roof sensor shows the 

strongest sensitivity/uncertainty, with distinct offsets observed between the different-

speed segments of the run.  Although the metrics of interest for the transition-network 

methods are the pressure differences amongst the front, back, and side sensors (∆𝐶𝑃̅), 

and an accurate reference offset is not strictly necessary, these corrected 𝐶𝑃 traces 

provide a means to interpret the aerodynamic behaviour of the vehicle based on 

conventional approaches, and permit spectral analysis of 𝐶𝑃 signals for individual 

sensors. 

4 On-Road Measurements 

4.1 No-Traffic Conditions 

To begin to understand the complex aerodynamic boundary conditions in the on-road 

data encountered by the test vehicle, the most basic case is analyzed. Isolated 

conditions for the on-road test can be assumed to have minimal cross/head wind, 

minimal interactions with other vehicles, and steady velocity. In Figure 7, on-road 

∆𝐶p̅ are plotted for steady-velocity data segments of low-wind test runs.  The data are 

sorted by environmental conditions including estimated roadside tree density (colour) 

and vehicle direction (marker shape).  Assuming that the low-wind conditions average 

to a no-wind result, 10 km/h wind limits on ∆𝐶p̅
𝐹𝐵 are denoted about its mean and 

suggest that reasonably-low winds were encountered during these tests.  The small 

range of ∆𝐶p̅
𝐹𝐿𝑅 and ∆𝐶p̅

𝐿𝑅 values suggests low yaw angles, resulting from low winds, 

but the sensitivity of these parameters to yaw angle is unknown for this particular 

vehicle.  Comparing these results to the DrivAer estimates in Figure 4, these results 

generally cluster within a range of ∆𝐶p̅ values that indicate low winds. The general 

offset of the ∆𝐶p̅
𝐹𝐿𝑅 data towards positive values (about 0.1) is due to slight lateral 

asymmetries in the surface position and casing shape of the BLE sensors.  Moderate 

linearity is observed between ∆𝐶p̅
𝐹𝐿𝑅 and ∆𝐶p̅

𝐿𝑅, providing additional evidence that 

these state-space metrics may be suitable for transition-network analysis.  



Contribution: 2025 FKFS Conference on Vehicle Aerodynamics and Thermal Management  

15 – 16 October 2025 | Leinfelden-Echterdingen  

 

Figure 7: On-road ∆𝐶p̅ plotted for isolated steady velocity data segments of Runs 01 

and 02 July 15, 2025.  Error bars represent one standard deviation. 

4.2 Wake-Effects Conditions 

To differentiate between close-proximity pressure-field influences and wake effects 

from leading vehicles such as an HDV or LDV, on-road ∆𝐶p̅ parameters are plotted 

in Figure 8 for steady-velocity data segments for various following distances, all 

acquired on Hwy 402. On-road data are sorted by environmental conditions, with 

estimated roadside tree density encoded by marker colour, mean vehicle direction 

indicated by marker shape, and estimated following distance 𝑑 represented by marker 

transparency. Error bars denote one standard deviation, reflecting the variability 

within each condition. Results show some clustering around the wind tunnel baseline 

∆𝐶p̅, as illustrated in Figure 4. Again, the dashed lines plotted in Figure 8 demonstrate 

expected ∆𝐶p̅
𝐹𝐵 values under an assumption (±10 km/h wind speed) that this parameter 

behaves the same way for this test vehicle as it does for the wind-tunnel DrivAer 

model.  The low ∆𝐶p̅
𝐹𝐵 values suggest that wind-speed deficits in the LDV wakes reach 

about 10% of the driving speed, while in the HDV wakes they reach up to about 20%. 

The westbound LDV-wake data in regions with minimal trees show increased ∆𝐶p̅
𝐹𝐿𝑅 

values with low ∆𝐶p̅
𝐹𝐵 values, suggesting wake interactions with cross winds, but the 

∆𝐶p̅
𝐿𝑅 values do not show an increase as would be expected with cross winds based on 

its isolated-condition relationship to ∆𝐶p̅
𝐹𝐿𝑅 (right-side plot in Figure 6).  Lateral shear 

in the wake, at small cross winds or small lateral offsets, may induce ∆𝐶p̅
𝐹𝐿𝑅 values 

indicative of cross winds when none are present.  These results highlight the 

complexities of multi-condition interactions, and provide evidence that the three 

indicators selected (∆𝐶p̅
𝐹𝐵, ∆𝐶p̅

𝐹𝐿𝑅, and ∆𝐶p̅
𝐿𝑅 ) may be insufficient to characterize 

adequately the aerodynamic state of the vehicle.   
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Figure 8: On-road ∆𝐶p̅ parameters plotted for steady velocity data segments for 

following a LDV and HDVs. Test speeds between 100 km/h and 110 km/h. 

As a secondary diagnostic of wake–proximity effects, power spectral densities (PSDs) 

of the pressure-differential metrics were computed.  Welch’s method was used with a 

Hanning window and 75% overlap. This combination reduces noise but preserves 

resolution. The spectra are plotted in Figure 9 against reduced frequency, 𝑓𝑟 = 𝑓𝐿/𝑈, 

where 𝐿 corresponds to the width of vehicle being followed (estimates of 1.9 m used 

for LDVs and 2.6 m for HDVs) and 𝑈 represents the steady vehicle speed.   

Significantly greater spectral energy is observed in the FLR metric (right plot) than 

for FB metric (left plot), due to the greater lateral coherence of wake turbulence across 

the front of the test vehicle than longitudinal coherence over its length.  For the 

‘following HDV’ cases, the spectra exhibit pronounced peaks at St =
0.076, 0.216, 0.260 and 0.357. The energy clustering near 𝑓𝑟 = 0.2~0.24 matches a 

previously derived band for HDV wakes [11].  

 

 

Figure 9: On-road pressure differential spectral analysis is plotted for steady velocity 

data segments for following an HDV and an LDV. 
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In contrast, for the ‘following LDV’ case (Run 01, July 16), peaks within the HDV 

band are absent or markedly weaker with only one pronounced peak at St = 0.186, 

and the spectrum is more broadband. These differences are consistent with the smaller, 

less coherent wake of an LDV at the same streamwise spacing, possibly indicating 

stronger cross-flow fluctuations experienced by the test car due to wind. 

4.3 Proximity-Effects Results 

The proximity and relative position of other vehicles with respect to the test vehicle 

can impact greatly the measured ∆𝐶p̅ parameters, as was shown for the DrivAer wind-

tunnel data in Figure 4. A sample of proximity effects in on-road conditions are 

presented by looking at a segment of the July 15 tests (Run 01) where the test vehicle 

was in relatively-low wind conditions in a channeled-flow environment and was 

passed by an HDV. In Figure 10, ∆𝐶p̅ time-series measurements are plotted to 

demonstrate the effect of the HDV position with respect to the test vehicle. The black 

dot with error bars represents the mean ∆𝐶p̅ values and one standard deviation for this 

45 s segment.  The 0.1 offset in ∆𝐶p̅
𝐹𝐿𝑅 corresponds roughly with the sensor-

position/shape bias noted in Section 4.1. 

   

Figure 10: On-road ∆𝐶p̅ parameters and respective mean values plotted for a steady 

velocity data segment where an HDV passed the test vehicle. Images show the 

progression of the passing maneuver and the effect the HDV position has on ∆𝐶p̅ 

parameters over time. 

With reference to published studies examining LDVs overtaking larger vehicles 

[12,13], and some of the author’s yet-to-be-published wind-tunnel work on LDV-

HDV-proximity effects introduced in Section 2, the overtaking scenario in Figure 10 

is explained.  Each of the four highlighted positions correspond to an extreme in the 

∆𝐶p̅ parameters, identified by the timestamped images:   
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• t = 0 s, HDV behind test vehicle: The high-pressure field forward of the HDV 

increases the base pressure of the test vehicle, leading to ∆𝐶p̅
𝐹𝐵 lower than 1, 

and displaces the airflow laterally causing an effective yaw angle for the 

vehicle, resulting in the positive ∆𝐶p̅
𝐹𝐿𝑅 values.   

• t = 14 s, HDV approximately nose-to-nose with test vehicle: As the HDV 

begins to overtake the test vehicle, the combined blockage of the two-body 

system reduces the base pressure, increasing ∆𝐶p̅
𝐹𝐵, and the flow-displacement 

effect of the HDV causes stronger local yaw angles, further increasing ∆𝐶p̅
𝐹𝐿𝑅. 

• t = 35 s, test vehicle approximately nose-to-tail with the HDV:  Localized 

blockage interactions between the vehicles generate reduced pressure over the 

front of the test vehicle, causing a decrease in ∆𝐶p̅
𝐹𝐵, and concentrated more 

strongly on the left side, causing the change to negative ∆𝐶p̅
𝐹𝐿𝑅. 

• t = 45 s: test vehicle behind HDV after it completes a lane change:  Wake 

effects are introduced, lowering  ∆𝐶p̅
𝐹𝐵, and the lateral shear during the HDV-

lane-change process is suspected to be the cause of the increasingly-negative 

∆𝐶p̅
𝐹𝐿𝑅. 

These individual ∆𝐶𝑃̅ states may be interpreted differently if examined in isolation.  

For example, t = 0 s and 35 s states may be interpreted as wake-effect states with cross 

winds.  However, the temporal transition between states provides additional context 

to the aerodynamic state of the vehicle, which is where transition-network concepts 

are expected to be beneficial for automated-vehicle control strategies. 

5 Conclusions 

This paper presented preliminary work towards a general concept for estimating the 

on-road aerodynamic state of a road vehicle, with anticipated uses for vehicle-

automation technologies.  On-road measurements were presented for three specific 

scenarios in relatively-low wind conditions, representing an isolated vehicle, 

following in the wakes of LDVs and HDVs, and being overtaken by an HDV.  The 

measurements highlight that a combination of multiple metrics will be necessary to 

infer adequately the aerodynamic state of a vehicle.  Complex conditions and varied 

positions of other vehicles in traffic highlight the need to track temporal changes in 

states, for which the use of transition networks will be applied to understand better, 

and to predict, aerodynamic states. 
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