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Abstract: By exploiting aerodynamic interactions among road vehicles,
driving-automation technologies have the potential to reduce energy use
and emissions.  Traditional platooning concepts consider multiple
vehicles travelling in close longitudinal proximity within the same road
lane, but recent research suggests that lateral offsetting and adjacent-lane
positioning can provide additional benefits in the complex traffic-and-
wind climate experienced in everyday driving. On-road aerodynamic-
state estimation will be a critical feedback metric for such autonomous-
vehicle systems. A small sample of multi-vehicle wind-tunnel results is
used to introduce a concept for using surface-pressure differences to infer
aerodynamic states, and measurements from on-road in-traffic tests
highlight ways to differentiate between wake effects from leading
vehicles and close-proximity pressure-field influences from adjacent-lane
vehicles. Complex conditions and varied positions of other vehicles in
traffic highlight the need to track temporal changes in states, and to use
multiple metrics to predict aerodynamic states.

1 Concept and Objectives

Instantaneous aerodynamic load prediction, whether for air or ground vehicles, has
vast applications related to performance, energy use, stability, and safety. Transient
disturbances from wind gusts, dynamic body motion, or relative motion to proximate
objects pose significant challenges. Current advances in autonomous aerial and road
mobility are pushing the limits of necessary environmental feedback to ensure reliable
control of vehicle motion and to ensure safety, while exploiting or avoiding
aerodynamic interactions with other bodies. Examples include: urban air-mobility
applications for human and goods transportation, for which navigating buildings and
associated wind disturbances is important [1], and autonomous road-traffic systems,
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for which close-proximity driving can reduce congestion and save energy via speed
harmonization and aerodynamic interactions [2]. Sensing the aerodynamic state of a
vehicle directly may improve real-time control strategies. Biological systems use
sensory feedback in this manner, such as fish or birds adapting in real time to exploit
local aero/hydro-dynamic phenomena [3]. Drones and ground vehicles are bluff
bodies (non-streamlined), for which surface-pressure changes, rather than air friction,
are highly correlated with overall aerodynamic performance, and can be used to infer
local wind conditions and aerodynamic behaviour [4]. Recent work has demonstrated
the feasibility of using sparse arrays of surface-pressure measurements to infer the
aerodynamic state of a body, by making use of data-driven methods via transition-
network concepts [5]. This approach is particularly useful for non-linear aerodynamic
environments with separated/stalled flows, characteristic of bluff bodies.

Emerging traffic-aerodynamics research and the accelerating deployment of
connected-and-automated-vehicle (CAV) and intelligent-transportation-systems
(ITS) technologies suggests that road-vehicle aerodynamic drag, and associated
energy use, can be optimized via two approaches: 1) optimized multi-lane mixed-
traffic patterns that minimize traffic-system drag [6]; and 2) active aerodynamic
technologies that adapt to their traffic environment [7]. This paper describes the
preliminary steps of a project examining the first of these approaches, namely traffic-
aerodynamic optimization using CAV technologies. Within this project, named
AeroCAYV, an attempt is being made to apply wireless surface-pressure sensing with a
transition-network approach to estimate real-time aerodynamic performance.
Section 2 provides some context to the necessity of the approaches being applied,
while Sections 3 and 4 document the on-road demonstrator and some preliminary
measurements, respectively.

2 The Challenge of Characterizing Aerodynamic Boundary Conditions

Based on a previous proof-of-concept investigation using a wireless-surface-pressure
measurement system [8], pressure-difference coefficients calculated using a vehicle-
speed-based dynamic pressure showed suitability as indicators of aerodynamic
boundary conditions. Building upon that experience, with additional knowledge from
wind tunnel tests of traffic interactions [6,9], three pressure-coefficient parameters
have been selected for the current on-road investigations, based on six locations
around the perimeter of the test vehicle. Specific locations are the Front centre (F),
the Back/Base centre (B), the Left-side door (L), the Right-side door (R), the Front
Left bumper (FL), and the Front Right bumper (FR). The (F)ront position is intended
to be as close to the stagnation point as possible. Pressure-difference coefficients are
defined based on the front-to-back difference (AC/®), the left-to-right-door difference

(ACSR), and the front-bumper left-to-right difference (ACJ*®). Challenges, and

potential solutions, using these parameters are described to provide some context for
the on-road data presented in a later section.

The three pressure-difference metrics have been calculated and presented in this
section for four traffic scenarios that were simulated using a 30%-scale DrivAer model
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in the NRC 9 m Wind Tunnel. Configuration 1 consists of the isolated DrivAer
Notchback model in uniform flow. Configurations 2 and 3 consist of the DrivAer in
proximity to an AeroSUV model, in a side-by-side arrangement (see Figure 1) and a
longitudinal-following arrangement (following the AeroSUV at 2 vehicle-length
spacing). Configuration 4 consists of a side-by-side arrangement with a heavy-duty-
vehicle (HDV) model, with the base of the two model nearly coincident (see [10] for
details of the HDV model).

Figure 1: 30%-scale DrivAer and AeroSUV models in a side-by-side configuration
in the NRC 9 m Wind Tunnel.

Figure 2 shows the variation with yaw angle of the ACI®, ACR, and ACF™R
parameters, using the wind-speed-based AC, values from the wind-tunnel
measurements. Although base pressure generally decreases with increasing yaw
angle, the corresponding lateral shift of the front stagnation point away from the
centreline causes a decrease at the front-centre position, which is approximately equal
to the change in base pressure. This results in an insensitivity of the AC_§B parameter
to yaw angle for this DrivAer shape. This behaviour suggests that AC/® may be a
good indicator of dynamic pressure experienced by the vehicle. The lateral pressure
differences, at the front of the body (ACS®) or from door to door (AC“®), show near-
linear changes with yaw angle, which suggest that either of these parameters may be
a good indicator of the yaw angle experienced by the vehicle. The main difference
between AC/® and AC;* is the slope, with the former having five times the sensitivity
of the latter.
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Figure 2: ACp metrics from wind-tunnel tests of the isolated DrivAer model.

Figure 2 estimates the variation of the three AC, parameters that would arise when
encountering different terrestrial wind speeds (increments of 5% of vehicle speed, up
to 20%). These ACp variations were calculated using a dynamic pressure based on
the vehicle speed, not the apparent wind speed. For each of the wind-speed
increments, the data show a path representing a 360° change in the direction of the
wind relative to the direction of motion of the vehicle. Head- and tail-wind conditions
scale the near-zero-yaw-angle values to greater or lesser magnitudes, while cross-
wind conditions increase the yaw angle. This is particularly apparent for the front-to-
back AC5® parameter which shows up to a £40% change at 0° yaw angle associated
with the 20% wind-speed increment, again suggesting that it may be a good indicator
of the dynamic-pressure of the wind. In a cross-wind orientation, the 20% wind speed
generates yaw angles that reach about 11°. The incremental AC;® and ACS"* values,
when terrestrial wind effects are estimated, show small changes at low wind speeds,
and extend reasonably proportionally with yaw angle as cross winds increases. If
measured on a vehicle, the ACp characteristics shown in Figure 2 suggest that these
parameters can be used to estimate the wind conditions (speed and yaw angle) while
driving. Either AC3® or ACJ*® could be used to first estimate the yaw angle, while
the estimated yaw angle and the AC}® parameter could be used to infer the dynamic
pressure, and correspondingly the wind speed. With appropriate characterization, this
boundary-condition estimation can be related to performance metrics, like the drag
coefficient, to estimate the “aerodynamic state” of the vehicle.

When travelling in traffic, significant challenges can arise that invalidate the
relationships of ACJ®, ACR, and ACT™® as direct indicators of local aerodynamic
boundary conditions. Some of these challenges are highlighted in Figure 3 that
compares the variability of these ACp, parameters in different wind conditions for
specific traffic-interaction conditions. The isolated vehicle case is contrasted against
the “side by side SUV” case, the “following an SUV” case, and the “side by side
HDV” case, based on the wind-tunnel measurements. For each case, the symbol
represents the 0°-yaw-angle value that represents no-wind conditions, and the lines
represent the same terrestrial-wind magnitudes of Figure 2. There is no general
consistency in the magnitudes and trends of the ACp, characteristics amongst the
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various cases. The “side by side SUV” is similar to the “isolated” case for the ACF®
parameter, but has distinct and opposite offsets for the AC5® and AC5“® parameters
with some reduction in linearity. When “following an SUV”, a distinct downward
shift is observed for AC5®, and reductions in slope and linearity are observed for AC;®

and ACJ™R. The “side by side HDV” case differs in that it demonstrates significant
yaw asymmetry in all three parameters, the largest spread of AC/” values, and non-
monotonic variability with yaw angle.
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Figure 3: ACp, metrics in various on-road scenarios relative to yaw angle.

These varying characteristics in the ACp plots of Figure 3 make prediction of local
boundary conditions much more complicated than isolated-vehicle results would
suggest. For example, if a yaw angle is inferred from AC3® and ACJ"?, the variability
of the AC_F‘,”B parameter amongst different conditions will make an accurate estimation
of the local wind speed nearly impossible. However, the manner in which the
scenarios differ from each other suggests that multi-variable or multi-state approaches
may provide a solution to estimate the “aerodynamic state” of the vehicle. Figure 4
shows these types of multi-state relationships for the data of Figure 3, but with the
ACp parameters plotted against each other instead of against yaw angle. Significant
variation is again seen for the AC/” plots (left and middle), while the AC}® vs. ACT*®
plot shows some collapsing of data along distinct characteristics for some of the
traffic-interaction scenarios. Combined with transition-network concepts [5], a
suitable approach to aerodynamic-state estimation may be feasible. This concept of
this project intends to use sparse sensor data captured on the test vehicle and combined
with a pre-trained algorithm to provide an estimate of the present aerodynamic state.
By embedding these measurements into a reduced-order phase-space model, the
system can then characterize distinct aerodynamic regimes and quantify the likelihood
of transitions between them. Transition-network concepts, coupled with Bayesian
statistics, will provide the framework for eventually estimating the current
aerodynamic state in real time. The final result will provide a low-order representation
of the inherently non-linear vehicle-flow interactions, which should remain robust to
the elevated noise levels typical of experimental on-road pressure measurements. The
remainder of this paper describes preliminary results from an on-road demonstrator
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being developed that will make use of these concepts, amongst other sensor-fusion
approaches, to adopt aerodynamic-state estimation as a control metric for minimizing
energy use of automated multi-vehicle-traffic systems. Preliminary measurements of
the ACS®, ACSR, and ACE™® metrics are shown to demonstrate the potential feasibility

of boundary-condition estimation from on-road measurements.
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Figure 4: ACp metrics in various on-road scenarios relative to each other.

3 On-Road Tests

An on-road demonstrator is being developed for the AeroCAV project with its end-
use goal to provide a platform to demonstrate the potential for energy savings from
controlled aerodynamic optimization with respect to wind and traffic conditions. The
system will be interchangeable on a number of vehicles. For initial concept evaluation,
the first use is with a compact battery-electric SUV. This section documents the
vehicle system, the initial test conditions, and the data processing methods.

3.1 Vehicle Systems

The experimental platform consisted of a 2022 Hyundai loniq 5 instrumented with a
Robotic Operating System (ROS)-based multimodal data acquisition system
developed in-house (Figure 5). The platform integrates multiple temporally
synchronized perception and vehicle-state sensing nodes. Two RGB cameras were
mounted at the front and rear of the vehicle to capture forward- and backward-facing
video. An Ouster OS1 LiDAR was installed to provide 3D point cloud data for depth
perception and object detection. Vehicle dynamics and reference pressure
measurements were recorded using an Xsens MTi-710 Inertial Measurement Unit
(IMU) sensor, installed inside the cabin. Eight Bluetooth Low Energy (BLE)-enabled
pressure sensors (Arduino Nano 33 BLE Sense Rev2) were mounted around the
vehicle—three on the front bumper, one on the roof, one on the driver’s side door, one
on the passenger’s side door, and one on the rear door. An additional sensor was
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deployed to measure ambient temperature outside the vehicle. All BLE nodes
streamed pressure or temperature readings to the ROS ecosystem. Vendor supplied
drivers along with custom microcontroller firmware and ROS drivers were developed
to interface the BLE-enabled pressure and temperature sensors, enabling time
synchronized acquisition and storage of camera images, LiDAR scans, IMU readings,
and pressure/temperature values within a unified ROS bag-based data collection
framework.

Figure 5: Instrumented test vehicle.

3.2 Test Conditions

On-road test data for this initial study were acquired between July 14 and 16, 2025, in
the province of Ontario, Canada, on roadways between the cities of London and
Sarnia. Most data were acquired on Highway 402, which is a four-lane divided
highway oriented east-west, with combinations of open terrain and tree-lined
segments, and a speed limit of 110 km/h. The target test conditions were constant-
speed driving with various boundary conditions. Early-day testing was conducted, in
lower-wind conditions, to target isolated constant-speed conditions with as little
traffic as possible. Only data for which forward vehicles were estimated to be at a
distance of at least 200 m, or more, were used for these “isolated” conditions, and
larger distances for heavy trucks. Test runs of particular interest for this manuscript,
and descriptions of the pertinent data segments, are:

e July 15, 2025, Run 01: Travelling westbound on Hwy 402, low traffic,
relatively-low southerly winds (around 5 km/h or lower, from left to right).

e July 15, 2025, Run 02: Travelling eastbound on Hwy 402, low traffic,
relatively-low southerly winds (around 5 km/h or lower, from right to left).
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e July 15, 2025, Run 03: Travelling westbound on Hwy 402 in the wake of heavy
trucks, relatively-low southerly winds (around 5 km/h or lower, from right to
left).

o July 16, 2025, Run 01: Travelling westbound on Hwy 22 and Hwy 402 in the
wake of light duty vehicles, moderate southerly winds (around 10 km/h or
lower, from right to left).

3.3 Data Methods

Converting data from the BLE pressure sensors to useful pressure-coefficient-
difference (ACp) values required a number of data processing steps. A sample set of
time-series data are provided in Figure 6 demonstrating measured data (speed,
altitude, pressures) and processed data (pressure coefficients).

speed [km/h]
100 relative altitude [m] [ ————

1 | \ S ——

s |

50 — ‘”

10.5 10.6 10.7 10.8 10.9 11 111 1.2 13
time, t[hr]
T T T
100 [—|---m-o- Pint N ]
w i h
£ FrontCenter s Py v
= FrontDriver i “ J“f’f\' b e .lﬂ A * o "‘W
o 095 FrontPassenger W M/(/“" "‘* _
g SideDriver uw;w/‘ s Tt
z SidePassenger ‘/”/V M uv""'m -~ - i
3 Back el B . S o "”mr"*““
= ‘ W h‘)," el
2 99 FrontRoof _w Loy WJ‘"%‘ fo’
| | | | | | |
10.5 10.8 10.7 10.8 10.9 11 1.1 1.2 1.3
time, t[hr]
— 15 I [ T T \ \ T T
o Co=1 \‘“‘n"' . Y | { [ f
P L) OO XY, VOO 1| M MY AN A u i, f Mot ;Ll' L |
:_; ; et : A s e e g P LN L A A R s
FrontDriver J
< L ) ) |
s o5 FrontPassenger H‘:\ o it M e A, Fwwwwﬁwwwwmmw ,.,W i LA, A By
g ol ?;ﬂesnv&r W '” . )
idePassenger s i i 28 L 8 bt e £ s iy o S Pror 5
o
= Back
5 LT g e .
L \ \ ., e ety Aty _
g 0.5 FrontRoof F"I,W\V\M‘NWMJ»‘wwwm,q,,\« W“VMI“MJN‘W'A,4'u“‘«“~¢““-\f”",,~m A pheg i \ (I iy g
a | I | | | | | | !
10.5 10.8 10.7 10.8 10.9 " A "2 1.3

time, t[hr]

Figure 6: Subset of test data for Run 01 on July 15, 2025.

The top plot in Figure 6 shows the vehicle speed and its altitude profile for this test
segment. The BLE pressure sensors measure absolute pressure (middle plot), and
each has a small but quantifiable bias error, relative to the others, that drifts slightly
over time. Furthermore, elevation changes and temporal changes due to the local
climate generate variations in the pressure that can exceed the dynamic pressure of
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the apparent wind during testing. The hydrostatic pressure change associated with the
55 m altitude change (approx. 650 Pa) is equivalent to the dynamic pressure of a 120
km/h wind. To compensate for these various factors, to permit a reasonably-accurate
calculation of the pressure coefficient for each sensor, a method to correct the
measurements based on a reference pressure acquired internal to the cabin (Pint value
in the middle plot, from the Xsens IMU sensor) was developed. The method is still
under development, but its preliminary results provide a reasonable adjustment for
each sensor. The Cp time-series data for each sensor are shown in the bottom plot of
Figure 6. The Front Centre sensor, which resides near the stagnation point, provides
a value near one, while the sides and base provide values near or slightly-below zero,
providing reasonable validation of the approach. The Front Roof sensor shows the
strongest sensitivity/uncertainty, with distinct offsets observed between the different-
speed segments of the run. Although the metrics of interest for the transition-network
methods are the pressure differences amongst the front, back, and side sensors (ACp),
and an accurate reference offset is not strictly necessary, these corrected C, traces
provide a means to interpret the aerodynamic behaviour of the vehicle based on
conventional approaches, and permit spectral analysis of Cp signals for individual
Sensors.

4 On-Road Measurements

4.1 No-Traffic Conditions

To begin to understand the complex aerodynamic boundary conditions in the on-road
data encountered by the test vehicle, the most basic case is analyzed. Isolated
conditions for the on-road test can be assumed to have minimal cross/head wind,
minimal interactions with other vehicles, and steady velocity. In Figure 7, on-road
AC_p are plotted for steady-velocity data segments of low-wind test runs. The data are
sorted by environmental conditions including estimated roadside tree density (colour)
and vehicle direction (marker shape). Assuming that the low-wind conditions average
to a no-wind result, 10 km/h wind limits on AC[® are denoted about its mean and
suggest that reasonably-low winds were encountered during these tests. The small
range of ACJ™® and ACS® values suggests low yaw angles, resulting from low winds,
but the sensitivity of these parameters to yaw angle is unknown for this particular
vehicle. Comparing these results to the DrivAer estimates in Figure 4, these results
generally cluster within a range of AC_p values that indicate low winds. The general
offset of the AC;"® data towards positive values (about 0.1) is due to slight lateral
asymmetries in the surface position and casing shape of the BLE sensors. Moderate
linearity is observed between ACJ™® and AC}R, providing additional evidence that
these state-space metrics may be suitable for transition-network analysis.
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Figure 7: On-road AC_p plotted for isolated steady velocity data segments of Runs 01
and 02 July 15, 2025. Error bars represent one standard deviation.

4.2 \Wake-Effects Conditions

To differentiate between close-proximity pressure-field influences and wake effects
from leading vehicles such as an HDV or LDV, on-road AC_p parameters are plotted
in Figure 8 for steady-velocity data segments for various following distances, all
acquired on Hwy 402. On-road data are sorted by environmental conditions, with
estimated roadside tree density encoded by marker colour, mean vehicle direction
indicated by marker shape, and estimated following distance d represented by marker
transparency. Error bars denote one standard deviation, reflecting the variability
within each condition. Results show some clustering around the wind tunnel baseline
AC,, as illustrated in Figure 4. Again, the dashed lines plotted in Figure 8 demonstrate
expected AC_rf B values under an assumption (10 km/h wind speed) that this parameter
behaves the same way for this test vehicle as it does for the wind-tunnel DrivAer
model. The low AC_FfB values suggest that wind-speed deficits in the LDV wakes reach
about 10% of the driving speed, while in the HDV wakes they reach up to about 20%.
The westbound LDV-wake data in regions with minimal trees show increased AC_I‘TLR
values with low AC_I‘,’B values, suggesting wake interactions with cross winds, but the
AC}%R values do not show an increase as would be expected with cross winds based on
its isolated-condition relationship to ACJ*® (right-side plot in Figure 6). Lateral shear
in the wake, at small cross winds or small lateral offsets, may induce AC5"® values
indicative of cross winds when none are present. These results highlight the
complexities of multi-condition interactions, and provide evidence that the three
indicators selected (ACS®, ACF™®, and ACS® ) may be insufficient to characterize
adequately the aerodynamic state of the vehicle.
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Figure 8: On-road Afp parameters plotted for steady velocity data segments for
following a LDV and HDVs. Test speeds between 100 km/h and 110 km/h.

As a secondary diagnostic of wake—proximity effects, power spectral densities (PSDs)
of the pressure-differential metrics were computed. Welch’s method was used with a
Hanning window and 75% overlap. This combination reduces noise but preserves
resolution. The spectra are plotted in Figure 9 against reduced frequency, f, = fL/U,
where L corresponds to the width of vehicle being followed (estimates of 1.9 m used
for LDVs and 2.6 m for HDVs) and U represents the steady vehicle speed.
Significantly greater spectral energy is observed in the FLR metric (right plot) than
for FB metric (left plot), due to the greater lateral coherence of wake turbulence across
the front of the test vehicle than longitudinal coherence over its length. For the
‘following HDV’ cases, the spectra exhibit pronounced peaks at St=
0.076,0.216,0.260 and 0.357. The energy clustering near f,, = 0.2~0.24 matches a
previously derived band for HDV wakes [11].

10

following HDV, |
®—Run 03 July 15th

following HDV,
" Run 04 July 15th
following LDV,
Run 01 July 16th
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............ d=~ 47 m

Figure 9: On-road pressure differential spectral analysis is plotted for steady velocity
data segments for following an HDV and an LDV.
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In contrast, for the ‘following LDV’ case (Run 01, July 16), peaks within the HDV
band are absent or markedly weaker with only one pronounced peak at St = 0.186,
and the spectrum is more broadband. These differences are consistent with the smaller,
less coherent wake of an LDV at the same streamwise spacing, possibly indicating
stronger cross-flow fluctuations experienced by the test car due to wind.

4.3 Proximity-Effects Results

The proximity and relative position of other vehicles with respect to the test vehicle
can impact greatly the measured ACp parameters, as was shown for the DrivAer wind-
tunnel data in Figure 4. A sample of proximity effects in on-road conditions are
presented by looking at a segment of the July 15 tests (Run 01) where the test vehicle
was in relatively-low wind conditions in a channeled-flow environment and was
passed by an HDV. In Figure 10, ACp time-series measurements are plotted to
demonstrate the effect of the HDV position with respect to the test vehicle. The black
dot with error bars represents the mean AC_p values and one standard deviation for this
45 s segment. The 0.1 offset in AC{“® corresponds roughly with the sensor-
position/shape bias noted in Section 4.1.

Figure 10: On-road AC_p parameters and respective mean values plotted for a steady
velocity data segment where an HDV passed the test vehicle. Images show the
progression of the passing maneuver and the effect the HDV position has on AC_p
parameters over time.

With reference to published studies examining LDVs overtaking larger vehicles
[12,13], and some of the author’s yet-to-be-published wind-tunnel work on LDV-
HDV-proximity effects introduced in Section 2, the overtaking scenario in Figure 10
is explained. Each of the four highlighted positions correspond to an extreme in the
AC_p parameters, identified by the timestamped images:
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e t=0s, HDV behind test vehicle: The high-pressure field forward of the HDV
increases the base pressure of the test vehicle, leading to AC;® lower than 1,
and displaces the airflow laterally causing an effective yaw angle for the
vehicle, resulting in the positive AC5"® values.

e t =14 s, HDV approximately nose-to-nose with test vehicle: As the HDV
begins to overtake the test vehicle, the combined blockage of the two-body
system reduces the base pressure, increasing ACF2, and the flow-displacement

effect of the HDV causes stronger local yaw angles, further increasing ACS"~.

e t =235s, test vehicle approximately nose-to-tail with the HDV: Localized
blockage interactions between the vehicles generate reduced pressure over the
front of the test vehicle, causing a decrease in AC_§B , and concentrated more

strongly on the left side, causing the change to negative ACS"~.

e t =45 s: test vehicle behind HDV after it completes a lane change: Wake
effects are introduced, lowering ACFE, and the lateral shear during the HDV-
lane-change process is suspected to be the cause of the increasingly-negative
AEFLR.

p

These individual ACp states may be interpreted differently if examined in isolation.
For example, t =0 s and 35 s states may be interpreted as wake-effect states with cross
winds. However, the temporal transition between states provides additional context
to the aerodynamic state of the vehicle, which is where transition-network concepts
are expected to be beneficial for automated-vehicle control strategies.

5 Conclusions

This paper presented preliminary work towards a general concept for estimating the
on-road aerodynamic state of a road vehicle, with anticipated uses for vehicle-
automation technologies. On-road measurements were presented for three specific
scenarios in relatively-low wind conditions, representing an isolated vehicle,
following in the wakes of LDVs and HDVs, and being overtaken by an HDV. The
measurements highlight that a combination of multiple metrics will be necessary to
infer adequately the aerodynamic state of a vehicle. Complex conditions and varied
positions of other vehicles in traffic highlight the need to track temporal changes in
states, for which the use of transition networks will be applied to understand better,
and to predict, aerodynamic states.
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